

ANATOMY

OSlide

OHandout

Number

Subject

Basal Ganglia
Done By

Abdallah S. S.
Corrected by

Doctor

Faraj Al-bustami

Date:

Price:

This sheet is written according to section \(\gamma \) recording. Hope you enjoy studying it.

See these two figures just to be familiar with basal ganglia structure:

- · The basal ganglia and cerebellum control the commands and activity of the upper motor neurons
- Basal ganglia is mainly involved in initiation and control of movements; mostly for axial muscles which are responsible for the posture for a phasic movement as writing on a board.

How it works? (see the figure)

- · As a feedback Reciprocal (same as the cerebellum).
- Doesn't deal with (α) and (γ) motor neurons.
- There's **NO** tract called cerebelluspinal tract.
- Also basal ganglia doesn't deal with (α) and (γ) .
- Area , lateral cerebellum and basal ganglia program the movement, but the only parts that descend are area area.

Direction of movement Amplitude of movement Basel Ganglia Emotional body language Reticulospinal tract Rubrospinal tract Vestibulospinal tract Figure 16.1

Conceptual overview of motor control

Structure;

- · Mainly consists of caudate and Lentiform (putamen and GP-I-medial & GP-E-lateral).
- · Caudate is a comma shaped of a head, body & tail.
- Recall: caudate and putamen are separated anatomically, while connected functionally as striatum {entrance for all over cortex to basal ganglia} (aka input)
- While the output goes through GP-I segment to the thalamus to finally reaches the cortex.
- There are two nuclei functionally connected to basal ganglia; substantia nigra in midbrain and subthalamic nucleus in diencephalon. (outside basal ganglia)

- · Substantia nigra consists of two parts:
 - Dorsal part (pars compacta); supplying the striatum with dopamine. (↓dopamine>Parkinson's D)
 - The pars reticulate serves mainly as an output, conveying signals from the basal ganglia to numerous other brain structures.

So the basal ganglia output goes through both GP-I and pars reticulate

& Recall:

- o The spasticity of upper motor neurons is from disinhibition of pontine-reticulospinal tract.
- o Pontine tract descends mainly contralateral and passes segmental at the spinal cord, and this explains the spasticity and hyper-tonia.
- · Basal ganglia regulates the aspects of movement; decision, direction and amplitude.
- E.g. patient with Parkinson's needs long time to decide to move ...
- Motor expression of behavior is also a function of basal ganglia; e.g. if you visit the same patient, you notice that he has a **mask face** as he lost face expressions. (see page 7)

Now let's discuss the old functional circuits:

- The input enters the striatum which composed of two types of cells;
 - cholinergic(excitatory) : secretes ACh
 - GABAergic (inhibitory) : secrets GABA
- Striatum here receives excitatory impulses from all over the cortex {sensory + motor + association} via glutamate (glutamatergic)
- Then as the information integrates, striatum sends out GABAergic fibers to the GP.
- · GP in turn sends GABAergic projection to the thalamus that excites the cortex.
- As you see the GP receives and sends inhibitory projections, so inhibition of inhibition will cause excitation to the thalamus (disinhibition). Therefore, the cortex is excited to regulate the movements.
- If the thalamus is highly activated, we get undesirable movements as tremors. But, if it's inhibited, the cortex also will be inhibited and we get slowness in movement.
- · We have to pathways: Direct and Indirect (see the figures)

- · Direct pathway causes excitation of the thalamus and cortex.
- For Indirect pathway an **inhibitory** projections exit the **GP-E to the subthalamic nucleus** that **excites** the GP-I
- Indirect pathway causes excitation of the subthalamus that activates GP-I which inhibits the thalamus and cortex.
- Direct pathway facilitates the desired movements, while the indirect pathway prevents undesirable movements.
- The striatum for both is GABAergic but different cells for each.

№ Parkinson's disease

- · LOSS OF STRIATAL DOPAMINE.
- Dopamine is excitatory for direct striatum cells and inhibitory for the indirect. That's receptor dependent. D\ for direct, where D\ for indirect.
- · Follow the figure, it's enough.
- Results in disfacilitation (inhibition) of the cortex, and causes AKINESIA or hypokinesia (slowness in initiation, continuing and termination of the movement).
- · Either direct or indirect pathway, we end with overactive GP-I.
- · Akinesia is neither paralysis nor paresis. (i.e. ULN & LMN are intact.)
- · Rest tremor is not always present.

™ Chorea: is a group of diseases characterized by rapid (dancelike) involuntary movements (DISKINESIA) largely restricted to muscles of distal extremities;

- · May attacks children as a complication of **rheumatoid** fever of chronic tonsillitis.
- If in adults; called <u>Huntington</u> chorea, which is hereditary disease that presents at about age Yoth. It's also accompanied with <u>dementia</u> (i.e. cerebral cortex affected also).
- The lesion is in the <u>indirect striatal</u> cells (GABAergic neurons) that inhibit GP-E, so GP-E is disinhibited and results in excessive inhibition to subthalamic nucleus and reduce inhibition of thalamus to finally greater facilitation of cortex and ends with spontaneous & undesirable movements.
- 🔊 Chorea: Hyperkinesia & hypo-tonia.
- Parkinson's D: Akinesia & hyper-tonia (rigidity / **bi**directional resistance). {no hyper-reflexia} (Also bradykinesia which is hesitation to move)
- · Previously, Parkinson's diseases was treated surgically by electrode to destroy GP-I.
- · Subthalamic nucleus:
 - ✓ Suppressed in chorea
 - ✓ Overactivated in Parkinson's
 - ✓ Treated by electrical stimuli in case of Parkinson's to regulate its impulses.
- The order of the o
 - Disinhibition of (α) and (γ) motor neurons of pontine tract (recall : mostly contralateral)
 - → as gamma represents stretch reflex , it represent the tone , so we get <u>hypertonia</u>. (Mainly extensors)
 - Disinhibition of (α) and (γ) motor neurons of rubrospinal tract, and we get hypertonia (Mainly **flexors**)
- Parkinson's D: → H.H.; hypo-kinesis & hyper-tonia.
- Patients with Parkinson's have <u>staring appearance</u>: Lack spontaneous eye movements accompanied with infrequent blinking. As FEF (broadman, area^A) is affected.
- **Recall:** spasticity is UMN lesion accompanied with hyper-reflexia and differs from rigidity.
- Again: Rest tremors are not always present, and affect muscles of fingers (pill-rolling).
 Patients try to hide this by any beneficial movement as it disappear unlike intention tremor of cerebellar disease.
- Basal ganglia lesion → dyskinesia (hypo or hyper) اضطراب الحركة (
- Apraxia: inability to understand, plan or execute a complex motor act. It follows a lesion to the **cerebral cortex** affects the ability to conceptualize the task. **It's not dyskinesia**.
- A chemical change in Parkinson's is decrease in dopamine to ACH ration. (\downarrow DA / \uparrow ACh).
- Treat ↓DA by <u>L-dopa</u>, as dopamine can't penetrate BBB.
- Treat ↑ACh by anti-cholinergic drugs
- | Page

- Amantadine can do both actions (\uparrow DA & \downarrow ACh).
- · L-dopa improves hypokinesia.
- The anti-cholinergic agents decrease the rest tremors.

129 The relation between basal ganglia and the limbic system:

- · A part of Basal ganglia plays a role in the limbic system (emotions, motivations, affective behaviours & memories)
- The anterior part (head) of caudate incorporates with putamen to form **nucleus accumbens that** highly receives dopamine.
- The motor part of striatum (direct and indirect) is putamen while the caudate has a cognitive function (i.e. practiced movement is well learned).
- To sum up: basal ganglia participates in emotions, motivations, affective aspects of behaviour, memories and cognition.