

The Endocine System

Anatomy

✓ Sheet

Slide

Handout

Number:

Subject:

Pituitary gland

Done By:

Omar Mahafza

Corrected by: Mohammad Daas

Doctor:

Abdurrahman Shdeifat

Date: 20/6/2016

Price:

- * Endocrine system: the collection of glands that produce hormones that regulate metabolism, growth and development, tissue function, sexual function, reproduction, sleep, and mood, among other things.
- ❖ A small comparison: Endocrine system <u>vs</u> Exocrine system
 - Endocrine system: products are released directly to blood going to distant organs
 - Exocrine system: products are released to a cavity (e.g. intestine/gut & lacrimation)
- ❖ Paracrine system: product of cells affect adjacent cells
- ❖ Endocrine glands generally are:-
 - Pituitary gland
 - Thyroid gland
 - Parathyroid glands
 - Adrenal gland
 - Pancreas islets
 - Gonad system (Ovaries & Testicles)
- ❖ In general, endocrine cells are <u>epithelial</u>.
- $\ \, \ \, \ \,$ Endocrine cells can have different embryological & anatomical structures.
- ❖ The relation between endocrine system & nervous system are intimate (correlated); some hormones that are product of endocrine system can be released by the nervous system, especially those of pituitary gland.
- ❖ A small comparison:-
 - Endocrine cells release <u>hormones</u> → long-acting & distant effect.
 - Neural cells release <u>neurotransmitters</u> → short-acting & local effect.
 (Both of them are secreted by specialized cells)

- > Systemic circulation: Arterial supply Capillary bed Venous drainage.
- ➤ Portal circulation: Organs take their arterial supply from venous blood, because such organs can't tolerate high blood pressure from arterial blood. (Clinically, this is called **Plication**)
- → → Hormones have 2 forms: <u>Steroids</u> or <u>Proteins</u> (amino acid-based)

Endocrine cells that secrete large amount of hormones/proteins have some features including:-

- Abundant rER (in case of protein hormones) or <u>s</u>ER (in case of <u>s</u>teroid hormones)
- Well-developed Golgi apparatus
- Abundant granules in cytoplasm

Glandular cells that are rich in steroidal hormones have **lost** the ability to be stained by H&E stain, unlike cells rich in protein/glycoprotein hormones that **can** be stained.

Pituitary gland (الغدة النخامية)

❖ Latin name of pituitary gland is hypophysis cerebri (hypo=below, physis=growth)

The reason behind naming it the pituitary gland is that the Greek anatomists thought that it produces the nasal mucus.
 Pituitary Gland

- Portal system is an important landmark in pituitary gland! (also in GI system)
- General structure of the pituitary gland; It contains:-
 - Anterior lobe (Adenohypophysis)
 - Posterior lobe (Neurohypophysis)
 - Intermediate lobe (Pars Intermedia)
 - Infundibulum/Stalk (connects it to the Hypothalamus) --- (sometimes considered as part of the posterior lobe)

Important Note: **Histology** of endocrine cells (specifically, in Pituitary glands) is a two-dimensional study of a three-dimensional reality!

Embryology of the pituitary gland:- (Origin from epithelial ectoderm)

- Anterior lobe: adenohypophysis originates from <u>Rathke's pouch</u> in the hypopharynx (oral ectoderm) The pouch invaginates superiorly from upper pharynx toward the base of skull, then segregation from the oral ectoderm occurs in step 3, forming the lobe.
- Posterior lobe: neurohypophysis is a protrusion that originates from the medial eminence of hypothalamus (neuro ectoderm) The protrusion invaginates inferiorly toward the hypopharynx.

Implications resulting from abnormal embryology:-

- Rathke's cleft cyst An abnormality where remnants of the tract of the pouch between the oral cavity and cranial cavity is found.
- Congenital anomalies

- ➤ Anatomy of the pituitary gland:-
 - ❖ The soft tissue of the pituitary gland lies on the "sella turcica" in the skull & it's well protected because of its important functions (e.g. Cortisol secretion).

Dimensions of the pituitary gland:

- 12 mm in transverse diameter
- 8 mm in anterior-posterior diameter
- 0.5 grams in adult

Structures lying around the pituitary gland:

- Optic chiasm
- Hypothalamus
- Cavernous sinus

(Inside the cavernous sinus lies the <u>Internal carotid</u> <u>artery</u> & <u>cranial nerves</u> (III, IV, VI, V1, V2).

So, any abnormality in the pituitary gland could damage one of these nerves or any structure lying around it. for example: Pituitary macroadenoma)

- * Blood supply:
- Superior hypophyseal artery direct branch from the internal carotid artery, it mainly supplies the infundibulum (stalk) & anterior part. (Major blood supply for the pituitary gland).
- **Inferior hypophyseal artery** branch from meningeohypophyseal trunk of internal carotid artery, it mainly supplies the posterior & inferior parts.

Note: These two arteries do not supply the gland directly; they supply other organs and give terminal branches that undergo venous outlet, giving venous supply to the gland. (Remember, we said the circulation in the pituitary gland is portal circulation).

- So, what is the major blood supply to the pituitary gland?
- ✓ Superior hypophyseal artery
- What is the main blood supply for adenohypophysis / infundibulum?
- ✓ Superior hypophyseal artery
- What is the main blood supply for neurohypophysis?
- ✓ Inferior hypophyseal artery

Note: Hypothalamus is related to the pituitary gland in terms of blood supply; some blood supply if cut, both the hypothalamus and the gland won't be functioning well (Common in surgeries).

❖ Circle of Willis:-

Consists of:

- Internal carotid artery
- Anterior cerebral artery
- Posterior cerebral artery
- Anterior communicating artery
- Posterior communicating artery

These arteries form an enclosed circle that lies superior to the pituitary gland.

❖ One example for the intimate relationship between the endocrine system & neural system is the relationship between the pituitary gland & hypothalamus;

Nuclei in the hypothalamus that could affect the pituitary gland are mainly supraoptic nucleus & paraventricular nucleus. They send a bulk of neurons in the hypothalamic pituitary tract through the infundibulum & control the neurohypophysis (posterior lobe) of the gland.

Anterior lobes consist of: pars tuberalis & pars distalis

Posterior lobe consist of:

pars nervosa & infundibulum

Venous drainage:

It drains into the cavernous sinus.

P.S.) There is a major connection between the 2 cavernous sinuses through the intercavernous sinuses that lies inferior to the pituitary gland.

- Classical histopathological staining classification:
- ❖ (ADENOHYPOPHYSIS)

Adenohypophysis cells are divided into: chromophils and chromophobes.

- Chromophobes (according to function)
 - Poorly-stained
 - Mainly Stem cells
 - Large cells
 - Scattered & non-functioning
- Chromophils
 - Well-stained
 - Well-functioning
 - Divided to acidophils & basophils

Type of secretions from different chromophils:-

Acidophils:

- a) Somatotrophs (Major; 50% of chromophils & occur in clumps) → Secretes growth hormone (GH); a protein hormone, so it's abundant in rER & is called insulin-like growth factor.
- b) Mammotrophs → Secretes <u>prolactin</u>.

Basophils:

- a) Gonadotrophs → Secrete <u>FSH & LH</u> (important in both males & females).
 - Importance in males: Indirectly stimulates spermatogenesis & increase libido (sexual desirability).
- b) Thyrotrophs (Only 5% of adenohypophysis) → Secrete thyroid-stimulating hormone (TSH).
- c) Corticotrophs → Secrete <u>ACTH</u>; allows the adrenal gland to secrete Cortisol.
- ❖ (NEUROHYPOPHYSIS) → No epithelium, just axons! 2 major hormones.

Its cells can be distinguished by a special stain called "Synaptophysin".

- ADH (Antidiuritic hormone, also known as "Arginine Vasopressin" (AVP)) is usually produced by the supraoptic nucleus of neuronal hypothalamus.
 - It is responsible for water retention, water secretion, Na+ resorption in distant tubules. So, any problem in ADH results in diabetes insipidus.
- Oxytocin is usually produced by the paraventricular nucleus of neuronal hypothalamus.
 - For females, it helps in contraction of myoepithilial cells of smooth muscle mostly in the breast & uterus.

- ❖ Hypopituitarism: decreased secretion of one or more of the hormones produced normally by the pituitary gland.
- ❖ Hyperpituitarism: increased secretion of one or more of the hormones produced normally by the pituitary gland.

➤ Anomalies resulting from Hypopituitarism:-

- Hypogonadism (decrease FSH & LH)
- Dwarfism (decreased GH)
- Acromegaly (excess GH) Occurs post-pubertal.
- Gigantism (excess GH) Occurs pre-pubertal.
- ❖ Melanocyte-stimulating hormone (MSH): An important hormone secreted by "pars intermedia" of the pituitary gland but in negligible amounts.
- ❖ Surgically, to reach the pituitary gland you have to enter the endoscope through the nasal cavity → open the sphenoid sinus → open the floor of sella turcica → open the Dura.

"Sealing material" is added to prevent CSF leak.

Special thanks to Moe Daas
Good Luck <3