Nafith Abu Tarboush
DDS, MSc, PhD
natarboush@ju.edu.jo
www.facebook.com/natarboush

Bioenergitics

Energy & why do we need it?

- Definition: Capacity to perform work
- Types of energy:
 - ✓ 1- Kinetic: Energy in the process of doing work or Energy of motion

- ✓ 2- Potential: Energy content stored in a matter
- Why products are more stable than the reactants?
- Whether a reaction occurs or not!

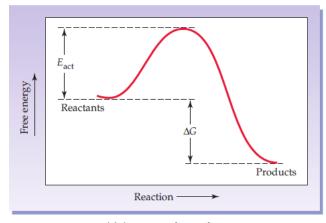
Thermodynamics/ Bioenergetics

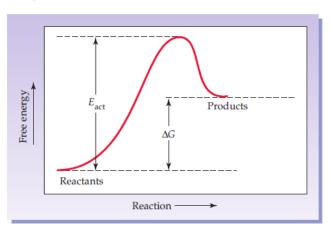
- Thermodynamics: the study of energy transformations that occur in a collection of matter
- Bioenergetics: studying thermodynamics (energy) in living organisms
- First Law of thermodynamics: Energy cannot be created or destroyed, but only converted to other forms. Energy of universe is constant
- > Second Law: All energy transformations are inefficient
 - 1. systems tend to increase in disorder
 - 2. systems lose usable energy as heat

Why Do Chemical Reactions Occur? Concept of Free Energy, Gibbs Equation

Free energy change: the total energy change in a system with respect to its temperature
Temperature

Free-energy change

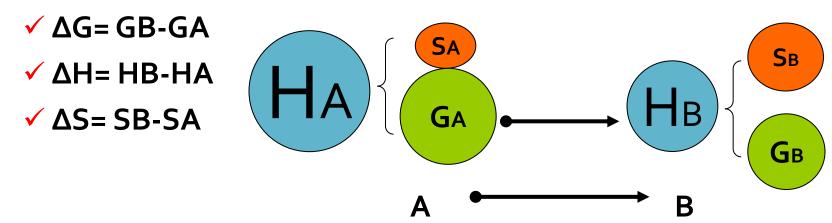

 $\Delta G = \Delta H - T \Delta S$


Heat of reaction

(in kelvins)

Entropy change

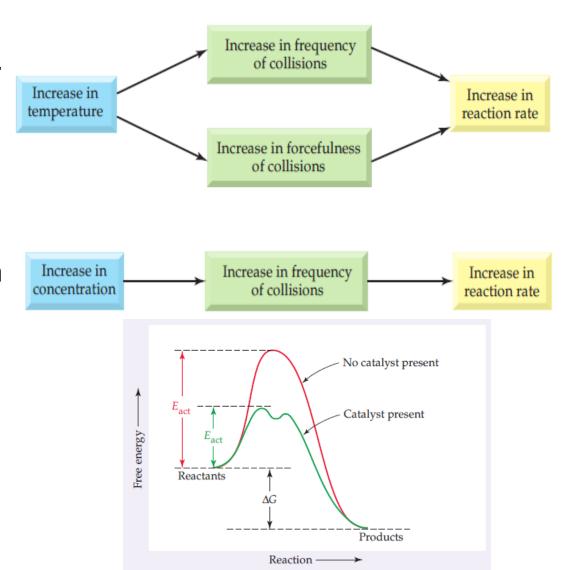
- Exergonic vs. endergonic
- The value of the free-energy change determines spontaneity
- The concept of activation energy



(b) An endergonic reaction

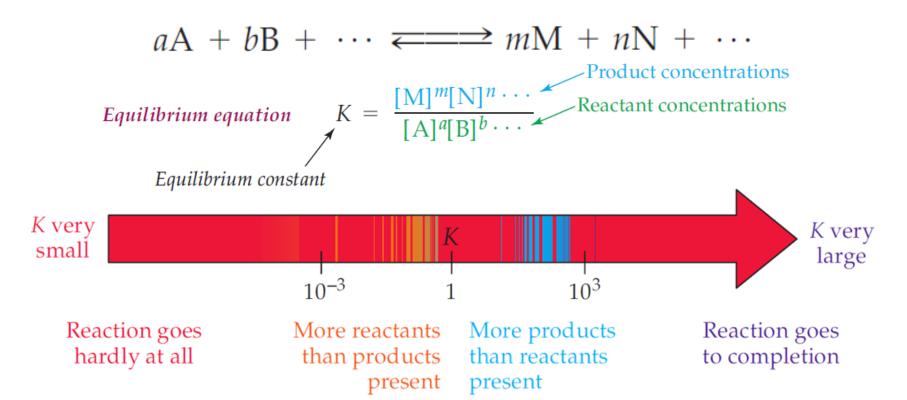
Energy of reactions

- > Enthalpy (H & ΔH): A measure of the amount of energy associated with substances involved in a reaction
- Exothermic & endothermic vs. Spontaneous & nonspontaneous – NOT always
- Entropy (S, ΔS): The amount of disorder in a system (solid, liquid & gas)
- Favorable enthalpy & entropy vs. favorable reaction


The different free energy terms

- ➤ △G = the free energy difference of a system at any condition
- ∠G° = the free energy difference of a system at standard conditions (25°C° & 1 atmospheric pressure, 1M concentration of reactants & products, pH = 7)
- Which one of these terms determine the feasibility of the reaction?
- ΔG depends only on initial state and final state of biochemical pathways
- ΔG is not affected by the mechanism of the reaction

$$A \xrightarrow{Enzyme 1} B \xrightarrow{Enzyme 2} C \xrightarrow{Enzyme 3} \dots$$


How Do Chemical Reactions Occur?

- Favorability vs. rates of reactions (thermodynamic vs. kinetic)
- Do all favorable reactions occur at room temperature? "The theory of collision"
- Effect of temperature, concentration & catalysts

Reversible Reactions & Chemical Equilibrium

- What is a reversible reaction?
- What is the chemical equilibrium? Chemical equilibrium is an active, dynamic condition
- At equilibrium, are concentrations equal?

$\Delta G \& K_{eq}$

- ➤ At equilibrium, \(\Delta G = o \)
- \triangleright Can a reaction has a + \triangle G° & still be favorable?

For a reaction
$$\mathbf{A} + \mathbf{B} \longleftrightarrow \mathbf{C} + \mathbf{D}$$

$$\Delta \mathbf{G} = \Delta \mathbf{G}^{o} + \mathbf{R} \mathbf{T} \ln \left(\frac{[\mathbf{C}] [\mathbf{D}]}{[\mathbf{A}] [\mathbf{B}]} \right)$$

$$\Delta G = \Delta G^{o'} + RT \ln \left[\frac{[C] [D]}{[A] [B]} \right]$$

$$0 = \Delta G^{o'} + RT \ln \left[\frac{[C] [D]}{[A] [B]} \right]$$

$$\Delta G^{o'} = -RT \ln \left[\frac{[C] [D]}{[A] [B]} \right]$$

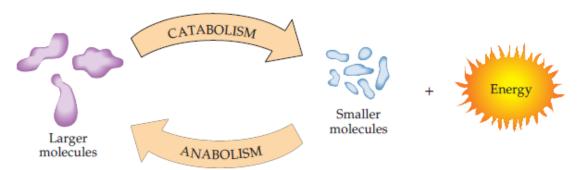
$$defining K'_{eq} = \left[\frac{[C] [D]}{[A] [B]} \right]$$

$$\Delta G^{o'} = -RT \ln K'_{eq}$$

K'eq	ΔG °' kJ/mol	Starting with 1 M reactants & products, the reaction:	
10 ⁴	- 23	proceeds forward (spontaneous)	
10 ²	- 11	proceeds forward (spontaneous)	
$10^0 = 1$	0	is at equilibrium	
10 ⁻²	+ 11	reverses to form "reactants"	
10 ⁻⁴	+ 23	reverses to form "reactants"	

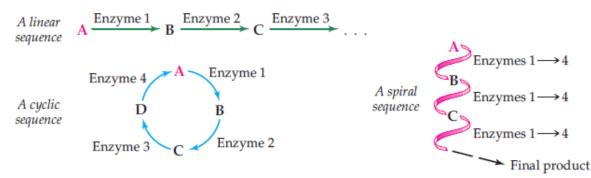
The Effect of Changing Conditions on Equilibria

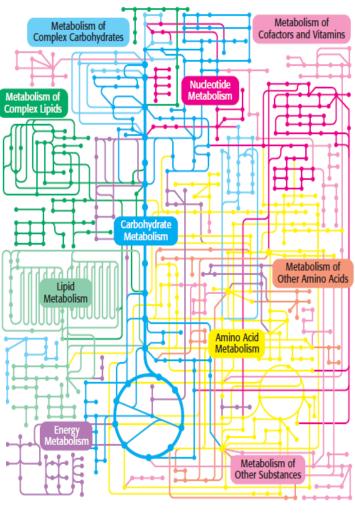
defining
$$K'_{eq} = \frac{[C][D]}{[A][B]}$$


$$\Delta G^{o'} = -RT \ln K'_{eq}$$

$$aA + bB + \cdots \rightleftharpoons mM + nN + \cdots$$

- When a stress is applied to a system at equilibrium, the equilibrium shifts to relieve the stress
- > Stress: any change that disturbs the original equilibrium
 - Effect of Changes in Concentration
 - ✓ What happens if a reactant/product is continuously supplied/ removed?
 - ✓ Metabolic reactions sometimes take advantage of this effect
 - Effect of Changes in Temperature
 - ✓ Endothermic/exothermic are favored by increase/decrease in temperature, respectively.
 - Effect of a catalyst on equilibrium


Energy and metabolic pathways

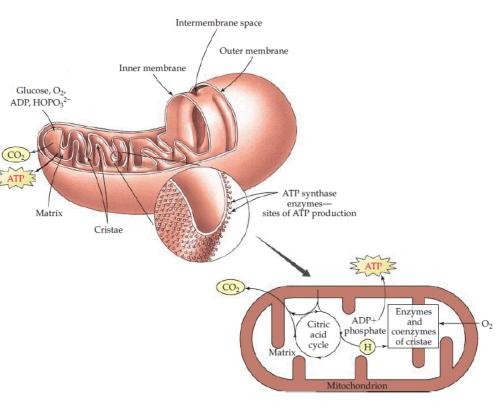

- Anabolic Pathways (Endergonic reactions): Those that <u>consume</u> energy to <u>build</u> biomolecules (Protein, Glycogen & lipids)
- Catabolic Pathways (Exergonic reactions): Those that <u>release</u> energy by <u>breaking down</u> complex molecules into simpler compounds such as glycolysis
- Metabolism is essentially a linked series of chemical reactions (biochemical pathways)

Biochemical (metabolic) pathways

- Are interdependent
- Are subjected to thermodynamics laws
- Their activity is coordinated by sensitive means of communication
- Allosteric enzymes are the predominant regulators
- Biosynthetic & degradative pathways are almost always distinct (regulation)
- Metabolic pathways are <u>linear</u>, cyclic or <u>spiral</u>

The energy machinery of the cell

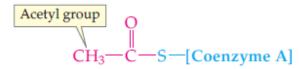
Prokaryotic cells vs. eukaryotic cells

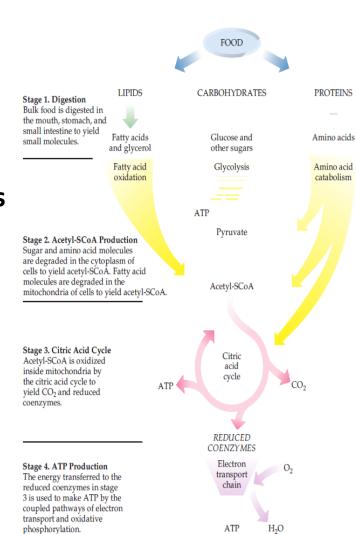

> The mitochondria (singular, mitochondrion) (90% of the body's

energy ATP)

The number of mitochondria is greatest in eye, brain, heart, & muscle, where the need for energy is greatest

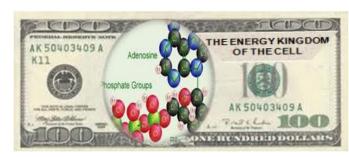
The ability of mitochondria to reproduce (athletes)


Maternal inheritance

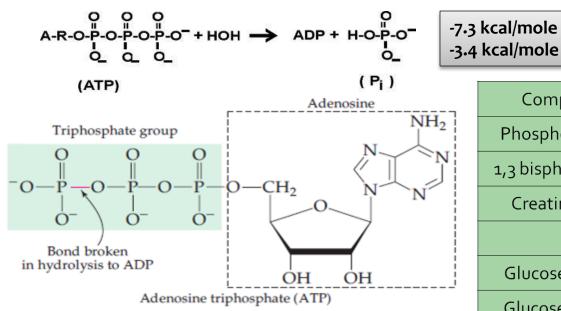

Stages of Energy Production

- Stage 1 (Digestion):
 - ✓ Mouth, stomach, & small intestine
 - ✓ Carbohydrates to glucose & other sugars
 - ✓ Proteins to amino acids
 - ✓ Triacylglycerols to glycerol plus fatty acids
 - ✓ From there to blood
- Stage 2 (Acetyl-coenzyme A)

Attachment o facetyl group to coenzyme A

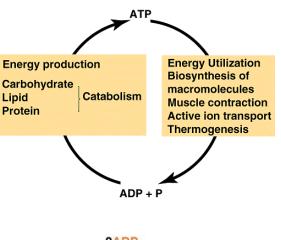


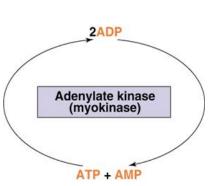
- Stage 3: citric acid cycle
- Stage 4: electron transfer chain & oxidative phosphorylation



ATP

- ATP is the energy currency of the cell
- What is a high energy molecule?
- Why ATP?

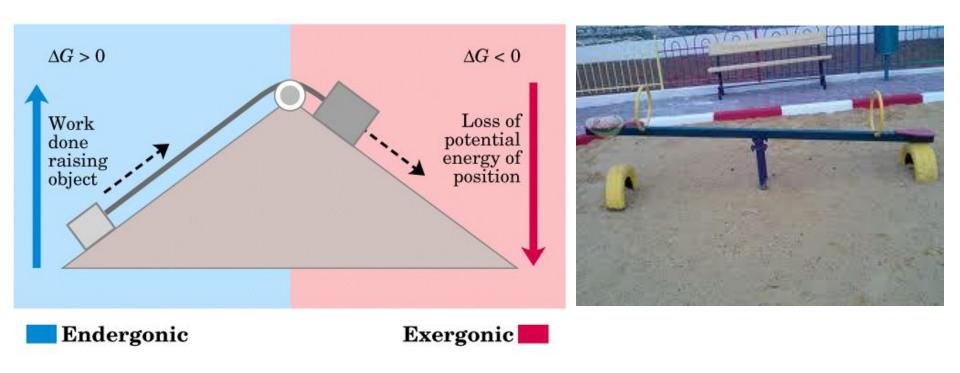

Has an intermediate energy value, so can be coupled



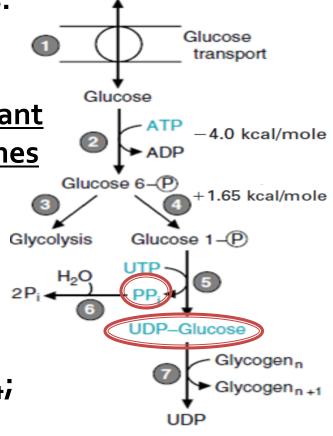
Compound +H₂O	Product + phosphate	ΔG°
Phosphoenol pyruvate	Pyruvate	-14.8
1,3 bisphosphoglycerate	3 phosphoglycerate	-11.8
Creatine phosphate	Creatine	- 10.3
ATP	ADP	- 7-3
Glucose 1- phosphate	Glucose	-5.0
Glucose 6- phosphate	Glucose	-3.3

Is ATP a good long-term energy storage molecule?

As food in the cells is gradually oxidized, the released energy is used to re-form the ATP so that the cell always maintains a supply of this essential molecule



Tissue	ATP turnover (mole/day)	
Brain	20.4	
Heart	11.4	
Kidney	17.4	
Liver	21.6	
Muscle	19.8	
Total	90.6	


How do our cells get energy for unfavorable biochemical work?

The concept of coupling

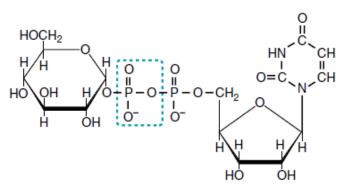
How do our cells get energy for unfavorable biochemical work?

- ΔG° Values are additive
 - i. Through phosphoryl transfer reactions:
 - √Step 2 (+3.3 vs. -4 kcal/mole)
 - √Step 2 + 4 = -2.35 kcal/mole
 - ✓ The net value for synthesis is irrelevant to the presence or absence of enzymes
 - ii. Activated intermediates (step 4 is facilitated by steps 5&6)
- II. \(\Delta G \) Depends on Substrate and ProductConcentration (step 4 has a ratio of 6/94; +1.65 kcal/mol, if 3/94; -0.4kcal/mol)

Glucose

How do our cells get energy for unfavorable biochemical work?

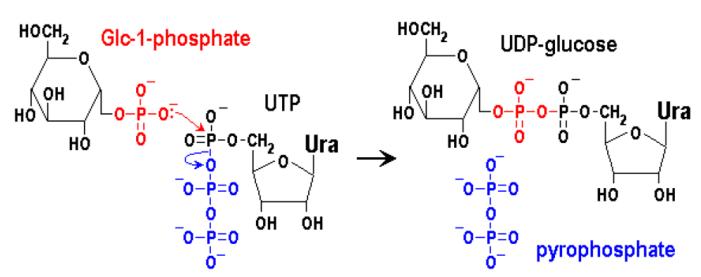
III. Activated Intermediates other than ATP; UTP is used for combining sugars, CTP in lipid synthesis, and GTP in protein synthesis

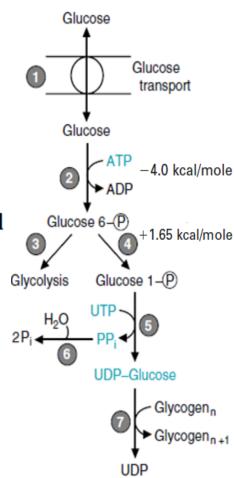

$$H_{2}\stackrel{O}{N} = C$$
 $N \sim P - O^{-}$
 $N \sim P - O^{-}$
 $N - CH_{3}$
 CH_{2}
 COO^{-}

1,3-Bisphosphoglycerate

Creatine phosphate

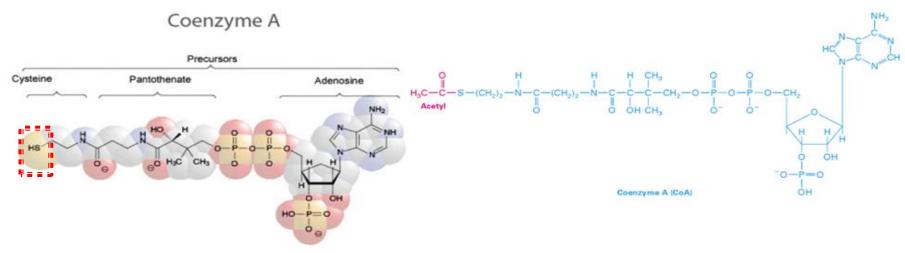
The UDP-glucose as an example


UDP Carries the activated sugar



Uridine diphosphate glucose (UDP-glucose)

Glycogen synthase


$$[glycogen]_n + UDP-Glucose \rightarrow [glycogen]_{n+1} + UDP \Delta G^{o'} = -33.4 \text{ kJ/mol}$$

The acetyl CoA as an example

- Coenzyme A is a universal carrier (donor) of Acyl groups
- Forms a thio-ester bond with carboxyl group

- ➤ Acetylcholine + $H_2O \longrightarrow Acetate + Choline \Delta G^o = -3 kcal$
 - + Choline \longrightarrow Acetylcholine + $\Delta G^{\circ} = +3$ kcal
 - > Acetyl CoA + \longrightarrow + CoA \triangle G° = -7.5 kcal
 - Acetyl CoA + Choline Acetylcholine + COA

Oxidation-Reduction reactions (Redox)

- Oxidation:
 - ✓ Gain of Oxygen
 - ✓ Loss of Hydrogen
 - Loss of electrons

- > Reduction:
 - Gain of Hydrogen
 - ✓ Gain of electron
 - ✓ Loss of Oxygen
- E= redox Potential: it is a POTENTIAL ENERGY that measures the tendency of oxidant/reductant to gain/lose electrons, to become reduced/oxidized
- Electrons move from compounds with lower reduction potential (more negative) to compounds with higher reduction potential (more positive)
- Oxidation and reduction must occur simultaneously

Oxidation-Reduction reactions (Redox)

- $\triangleright \Delta E = E_A E_D$
- $\triangleright \Delta E$ = Redox difference of a system in any condition
- ΔE° = Redox difference of a system in standard condition (25C° and 1 atmosphere pressure, pH = 7)
 - \triangleright Does $\triangle E$ determine the feasibility of a reaction?

$$\triangleright \Delta G^{\circ} = -nf\Delta E^{\circ}$$

ΔG is related to ΔE

- $\triangleright \Delta E$ is directly proportional to ΔG°
 - $\triangleright \Delta G^{\circ} = -nf\Delta E^{\circ}$

- Where:
- n = the number of transferred electron
- > F = the Faraday constant (96.5 kJ/volt) (23.06 kcal/volt)
- E = the reduction potential (volts);
- G = the free energy (Kcal or KJ)
 - In other words; energy (work) can be derived from the transfer of electrons
 - > Or
 - Oxidation of foods can be used to synthesize ATP

Oxidation-Reduction reactions (Redox)

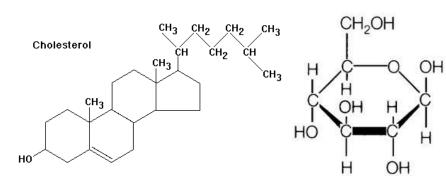
Always involve <u>a pair</u> of chemicals: an electron donor and an electron acceptor (Food vs. NAD+)

NAD+ vs. FAD

NAD+ vs. NADP+ (fatty acid synthesis and detoxification reactions)

Oxidation-Reduction reactions (Redox)

The more negative the reduction potential, the greater is the energy available for ATP generation

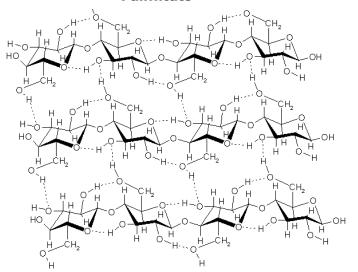

Table 19.4. Reduction Potentials of Some Oxidation-Reduction Half-Reactions

Reduction Half-Reactions	E ⁰ ′ at pH 7.0
$1/2 O_2 + 2H^+ + 2 e^- \rightarrow H_2O$	0.816
Cytochrome a-Fe ³⁺ + 1 e ⁻ → cytochrome a-Fe ²⁺	0.290
$CoQ + 2H^+ + 2 e^- \rightarrow CoQH_2$	0.060
Fumarate + 2H ⁺ + 2 e ⁻ → succinate	0.030
Oxalacetate + 2H ⁺ + 2 e ⁻ → malate	-0.102
Acetaldehyde + 2H ⁺ + 2 e ⁻ → ethanol	-0.163
Pyruvate + 2H ⁺ + 2 e ⁻ → lactate	-0.190
Riboflavin + 2H ⁺ + 2 e [−] → riboflavin-H ₂	-0.200
$NAD^+ + 2H^+ + 2 e^- \rightarrow NADH + H^+$	-0.320
Acetate + 2H ⁺ + 2 e ⁻ → acetaldehyde	-0.468

NADH +
$$1/2O_2$$
 — NAD+ + H_2O FADH₂ + $1/2O_2$ — FAD + H_2O NADH — NAD+ + $2e^ \Delta E^o = +0.32$ FADH₂ — FAD + $2e^ \Delta E^o = +0.20$ O + $2e^-$ — O^{2-} $\Delta E^o = +0.82$

CALORIC VALUES OF FUELS

 Directly related to its oxidation state (ΔG°)= the transfer of electrons from that fuel (C-H and C-C bonds) to O2



> 2. In humans, the enzymes that H₃c-oxidizes fuels! Burning of wood

Compound	ΔG° (kcal/mol)	Molecular weight	Caloric value (kcal/g)
Glucose	686	180	3.8
Palmitate	2380	256	9-3
Glycine	234	75	3.1

нннннн н

Palmitate

