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Preface 

The purpose of the first edition of Statistical Methods for Health Care Research was to 
acquaint the reader with the statistical techniques most commonly reported in the 
research literature of the health professions. We attempted to make the book user­
friendly by keeping mathematical symbolism to a minimum and by using computer 
printouts and examples from the literature to demonstrate specific techniques. In the 
second edition, we further reduced mathematical equations, moved from mainframe to 
personal computer examples, and added new techniques such as logistic regression. In 
the third edition, we added a dataset for use with the exercises at the end of the chap­
ters. In the fourth edition, we incorporated suggestions from students and reviewers to 
clarify complex statistical procedures. 

Once again, in this fifth edition, we have updated the examples from the literature and 
included additional content primarily in the area of preparing data for statistical analyses. 
We believe that it is essential that one spend time preparing the data prior to running 
statistical analyses. We, therefore, have added a section on the principles for preparing 
data for analyses and included more detail on carrying out data transformations. We 
also have expanded the sections on handling outliers and dealing with missing data. 

The concepts of sensitivity and specificity are now part of data analyses. We have 
added an introductory section on these concepts, and, in the chapter on logistic regres­
sion, we demonstrate how to interpret the printout in terms of sensitivity and sp~cificity. 

The statistical software has been updated using SPSS version 12.0. The exercises at 
the end of each chapter are based on the database provided on a CD-ROM in the back 
of the book. Each year, our students add additional cases to the database, and we 
encourage you to have your students add cases for their use, as well. We continue to 
underplay the role of mathematical calculations, assuming that readers will be using a 
personal computer for statistical analyses. 

As a support for instructors, we have produced PowerPoint presentations for each 
chapter. Go to the LWW connection web site to access the full set ofPowerPoint slides, 
which include guidelines for using SPSS. www.connection.LWW.com 

TEXT ORGANIZATION 

We have organized the teXI; into two sections: 
Section I includes three chapters that present content essential to Understanding the 

Data. Content includes organizing and displaying data, univariate descriptive statistics, 
inferential statistics, hypothesis testing, and dealing with missing data and outliers. 

ix 



X Preface 

Section II presents 14 chapters that address Specific Statistical Techniques includ­
ing nonparametric techniques, t rests, one-way and multifactorial analysis of variance, 
analysis of covariance, repeated measures analysis of variance, correlation, regression, 
canonical correlation, logistic regression, factor analysis, confirmatory factor analysis, 
path analysis, and structural equation modeling. 

Once again, we would like to thank the users and reviewers of the first four editions 
who made very helpful suggestions for this fifth edition. The students at Boston College, 
The University of Pennsylvania, and Yale University who have taken courses taught by 
authors of this text have most definitely played a role in the continuing development of 
this text, and we thank them too. 
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Understanding 
the Data 





Organizing and 
___ Displaying Data 

Mary E. Duffy 
Barbara S. Jacobsen 

After reading this chapter, you should be able to do the following: 

1. Discuss the nature, purpose, and types of statistics. 
2. Discuss variables, levels of measurement, and their relationship to statistical 

analysis. 
3. Discuss principles of data handling. 
4. Interpret a frequency distribution created by a computer program. 
5. Organize data into a table. 
6. Interpret data presented in a chart. 

Research is the systematic study of one or more problems, usually posed as re­
search questions germane to a specific discipline. Quantitative research uses specific 
methods to advance the science base of the discipline by studying phenomena rele­
vant to the goals of that discipline. Quantitative research methods include experi­
ments, surveys, correlational studies of various types, and some commonly encoun­
tered procedures such as meta-analysis and psychometric evaluations (Knapp, 1998). 

Usually when researchers collect data to answer specific quantitative research 
questions, they want to draw conclusions about a broader base of people, events, 
or objects than those actually included in the particular study. For example, a 
researcher may want to draw conclusions about how effective a telephone-delivered 
coaching intervention delivered by Registered Nurses (RNs) is in relieving postoper­
ative distress in patients having knee surgery in a same-day, ambulatory surgical set­
ting. Yet the researcher selects only a specific number of these patients to study, not 
the total group of knee surgery patients. The larger group of patients the researcher 
wants to draw conclusions about is called the population; the term parameter is 
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4 SECTION I Understanding the Data 

used when describing the characteristics of the population. The group of patients 
the researcher actually studies is called the sample; the term statistic is used to 
describe the characteristics of this group. In most studies, the population parameters 
are not known and must be estimated from the sample statistics (Norusis, 2002). 

THE NATURE OF STATISTICS 

Statistics is a branch of applied mathematics that deals with collecting, organizing, 
and interpreting data using well-defined procedures. Researchers use a variety of 
techniques to gather these data, which become the observations used in statistical 
analyses. Thus, the raw materials of research are data, gathered from a sample that 
has been selected from a population. Applying statistics to these data permits the 
researcher to draw conclusions and to understand more about the sample from 
whence the data were obtained. 

The purpose of statistics is threefold: to describe and summarize information, 
thereby reducing it to smaller, more meaningful sets of data; to make predictions or 
to generalize about occurrences based on observations; and to identify associations, 
relationships, or differences between the sets of observations. When our goal is to 
summarize data, we take a large mass of unorganized bits of information and reduce 
them to smaller sets that describe the original data without sacrificing critical ele­
ments. If our goal is to make predictions or to generalize about occurrences of data, 
we use statistics as an inferential measuring tool. This permits us to state the degree 
of confidence we have in the accuracy of the measurements we make in a specific 
research context. When we want to identify associations, relationships, or differ­
ences between variables of interest, we are using knowledge about one set of data 
to infer or predict characteristics about another set of data. Each statistical technique 
discussed in this book serves one or more of these purposes. 

There are two main types of statistics: descriptive and inferential. Descriptive 
statistics are used to describe or characterize data by summarizing them into more 
understandable terms without losing or distorting much of the infonnation. Summary 
tables, charts, frequencies, percentages, and measures of central tendency are the most 
common statistics used to describe basic sample characteristics. In Contrast, inferential 
statistics consist of a set of statistical techniques that provide predictions about popula­
tion characteristics based on infonnation in a sample from that population. The primary 
focus of most research is the parameters of the population under study; the sample and 
statistics describing it are important only insofar as they provide infonnation about the 
population parameters. Thus, an important aspect of statistical inference involves 
reporting the likely accuracy, or degree of confidence, of the sample statistic that pre­
dicts the value of the population parameter (Agresti & Finlay, 1997). 

VARIABLES AND THEIR MEASUREMENT 

Data are the raw materials of research. The most common way a researcher 
acquires data is to design a study that will answer a specific research question. The 
researcher then attempts to answer the question by collecting information (data) 
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about the characteristics of interest in the study, usually people, events, or objects. 
Once collected, the data must be organized, examined, and interpreted using well­
defined procedures. Almost all quantitative studies involve data that are entered 
into a computer-based statistical spreadsheet for subsequent data analysis. The 
logistics and time required to collect data, enter it into a statistical spreadsheet, and 
prepare it for data analysis are often greatly underestimated and poorly understood. 
Davidson (1996) recommends taking control of the structure and flow of your data 
from the beginning. Hopefully, this will help eliminate faulty data leading to faulty 
conclusions. 

In research, the specific characteristics of interest are commonly called vari­
ables. A variable is a characteristic being measured that varies among the per­
sons, events, or objects being studied. Measurement, in the broadest sense, is the 
assignment of numerals to objects or events according to a set of rules (Stevens, 
1946). For example, the length of a piece of paper can be measured by following 
a set of rules for placing a graduated straightedge (eg, a ruler) and then reading 
the numeral that corresponds to the concept of the paper's length. This definition 
can be broadened to include the assignment of numerals to abstract, intangible 
concepts such as resilience, self-esteem, and health status. After determining a 
method of measurement for the concept, it is then called a variable (ie, a meas­
ured characteristic that takes on different values). Stevens (1946) noted four types 
of measurement scales for variables: nominal, ordinal, interval, and ratio. When 
analyzing data, the first task is to be aware of the type of measurement scale for 
each of the variables, because this knowledge helps in deciding how to organize 
and display data. 

Nominal Scales 

This type of scale, the lowest form of measurement, allows the researcher to 
assign numbers that classify characteristics of people, objects, or events into cat­
egories. Sometimes nominal variables are called categorical or qualitative. These 
numeric values are usually assigned to the categories as labels for computer stor­
age, but the choice of numerals for those labels is absolutely arbitrary. Some 
examples follow: 

Variables 

Group Membership 

Gender 

Adherence to Scheduled Appointment 

Values 

1 = Experimental 

2 =Placebo 
3 =Routine 
0 =Female 
I= Male 
0 = Did nm keep appointment 

1 = Kept appointment 
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Ordinal Scales 

In this case, the characteristics are placed in categories and the categories are 
ordered in some meaningful way (ie, the assignment of numerals is not arbitrary). 
Ordinal measures can be ranked from high to low. The distance between the cate­
gories, however, is unknown. Summated rating scales, as exemplified by the popu­
lar Likert scale, are examples of ordinal scales. For example, an RN who works in 
long-term care could rank patients on their ability to carry out activities of daily liv­
ing (ADLs): 3 = fully able to perform all ADLs, 2 = partially able to perform ADLs, 
or 1 = not able to perform any ADLs independently. For the record, however, it is 
irrelevant how many ADLs fall into each category. Some other examples follow: 

Variables 

Socioeconomic status 

Health Status 

Pain Intensity 

Values 

1 =Low 

2 =Middle 
3 =High 
1 =Very Poor 

2 =Poor 

3 =Fair 

4= Good 

5 = Excellent 
0 =No pain 

1 = Minor/Little Pain 

2 = Modern.te Pain 

3 = Severe Pain 

Interval Scales 

Ratio Scales 

For this type of scale, the distances between these ordered category values are equal 
because there is some accepted physical unit of measurement. Because the units are 
in equal intervals, it is possible to add and subtract across an interval scale. You can 
say that the difference between 5 and 10 is the same amount (5) as the difference 
between 75 and 80. An interval scale provides information about the rank ordering 
of categories and the magnitude of the difference between different values on the 
scale. Interval variables may be continuous (ie, in theory, they may take on any 
numerical value within the variable's range), or they may be discrete (ie, takes on 
only a finite number of valOes between two points). A good example of interval­
level measurement is the Fahrenheit scale of temperature. 

The fourth and most precise level of measurement consists of meaningfully ordered 
characteristics with equal intervals between them and the presence of a zero point that 
is not arbitrary but is detennined by nature. Blood pressure, pulse rate, and weight are 
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examples of ratio variables. With ratio scales, all mathematical operations (addition, 
subtraction, multiplication, division) are possible. Thus, one can say that a 200-pound 
man is twice as heavy as a 100-pound man. The distinction between interval and ratio 
variables is interesting, but for the purposes of this text, these two types of variables 
are handled the same way in analyzing data when the assumptions underlying the sta­
tistical test are met. 

Measurement Scale Considerations 

Researchers need to be very clear about the measurement levels of their study vari­
ables, particularly when it comes to classifying variables as either ordinal, interval, or 
ratio (Burns & Grove, 2001). When measuring variables derived from psychosocial 
scales, psychological inventories, or tests of knowledge, there may be differences of 
opinion as to the variable's level of measurement. Many of these scales have arbitrary 
zero points as determined by the test developer, and they have no accepted unit of 
measurement comparable to a standard ruler measurement of inches and feet. Tech­
nically, these variables are ordinal in nature, but in practice, researchers often think of 
them as interval- or ratio-level scales. This has been a controversial issue in the 
research literature for years. Gardner 0975) reviewed the early literature on this con­
flict, and Knapp 0990) has commented on more recent literature. In his original arti­
cle on measurement 0946) and in a later article 0968), Stevens noted that treating 
ordinal scales as interval or ratio scales may violate a technical canon, but in many 
instances the outcome had demonstrable use. More recently, Knapp 0990, 1993) and 
Wang, Yu, Wang, and Huang 0999) pointed out that such considerations as measure­
ment perspective, the number of categories that make up an orrlinal scale, the concept 
of rneaningfulness, and keeping in mind the relevancy of measurement scales to per­
missible statistics may be important in deciding whether to treat a variable as ordinal 
or interval. We recommend these articles for further rearling on this topic. 

It is usually best to gather data at the highest level of measurement for research 
variables because this permits the researcher to perform more mathematical opera­
tions and gain greater precision in measurement. However, inteiVal or ratio variables 
can be converted to ordinal or nominal variables. For example, diastolic blood pres­
sure, as measured by a sphygmomanometer, is a ratio variable. However, for research 
purposes, if blood pressure is recorded as either controlled or uncontrolled, then it is 
a nominal variable. In this case, there is a physiologic basis for such a dichotomous 
division. But when no such reason exists, converting inteiVal or ratio variables to 
lower-level nominal or ordinal variables can be unwise because it results in a loss of 
information. Cohen 0983) detailed the amount of degradation of measurement as a 
consequence of dichotomization and urged researchers to use all of the original 
measurement information. 

PRINCIPLES OF DATA HANDUNG . 

Traditionally, very little has been written about the principles of getting research 
data ready for statistical analysis. In recent years, however, the principles of data 
handling have begun to be written about. Davidson 0996) delineates major 
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principles of statistical data handling to fill the gap between getting data into 
the computer and running statistical tests. These principles are based on his view 
that data handling has certain universal c.oncepts that apply no matter what the 
data-gathering context or the computer software used. We encourage you to 
read Davidson's book for a full listing of his principles. We have listed below those 
principles that relate directly to data collection, input, manipulation, and debug­
ging. 

Atomicity Principle: You cannot analyze below the data level that you 
observe. For example, you gather information about study participants' ages 
by asking them to circle the number that best reflects their chronological 
age. For example, 
1. 21-25 years 
2. 25.1-29.9 years 
3. 30-39.9 years 
4. 40 or more years 
This age variable is measured at the nominal (categorical) level, the lowest 
form of measurement. Had you asked for participants' ages using a higher 
form of measurement (ie, What is your age in years? ), you 
would be able to manipulate the age variable to produce measures of cen­
tral tendency, including respondents' average age, standard deviation, and 
variance. With the lower-level nominal-level age data, the frequency and 
related percent of persons falling within the stated categories are the best 
information about age available to you. 

Appropriate Data Principle: You cannot analyze what you do not measure. 
If you want to know a respondent's age but do not gather such informa­
tion, then you can't use age as a variable in subsequent analyses. Adhering 
to this principle requires that you anticipate what variables might be 
needed to explain the results of your data analyses. 

Social Consequences Principle: Data about people are about people. Data 
can have social consequences. Suppose you are gathering information on 
how effective (ie, efficacy) a specific nonpharmocologic pain management 
intervention is in relieving pain in patients with chronic headach<;s. You 
lind that the intervention does not significantly differ from the standard 
method of giving nonsteroidal anti-inflammatory drugs (NSAlDS) every 4 
hours as needed. Thus, it would not be appropriate, and possibly unethical, 
to counsel them to use the nondrug intervention rather than take a dose of 
NSAIDS that works. 

Data Control Principle: Take control of the structure and flow of your data. 
Even if you are not going to be the person who enters data into a statistical 
or other computer program, you should take responsibility for developing 
and monitoring the procedure for the layout of each respondent's data 
record (ie, a codebook for how data will be entered into the program; data 
entry and data manipulations such as recoding vanable levels and comput­
ing new variables). 
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nata Efficiency Principle: Be efficient in getting your data into a computer, but 
not at the cost of losing crucial information. For example, do not hand-total 
respondents' scores on a 10-item self-esteem scale and then enter only the 
total score as the measure of their self-esteem in each electronic respondent's 
data record. By so doing, you are not able to determine the internal consis­
tency reliability of the self-esteem scale because you chose not to enter the 
items that formed the self-esteem scale score into respondents' data records. 
Thus, you have sacrificed scientific rigor in favor of efficient data entry. 

Change Awareness Principle: Data entry is an iterative process. Keep a list 
of the changes you have to make (computations), the values you will have 
to change (recoding), and the problems you will have to solve (debugging), 
but try to use the computer to do as much computing and debugging as 
possible. 

Data Manipulation Principle: Let the computer do as much work as possi­
ble. Instruct it to do tasks such as receding, variable computation, dataset 
catenation Oinking), dataset subsetting, data merging, and sintilar tasks that 
would, frankly, waste your time. Let the computer manipulate your data 
for you. 

Original Data Principle: Always save a computer file of the original, unal­
tered data. In this way, if you make a mistake in manipulating data through 
improper recoding of variables or computing new variables, you will have 
the original data file to use to rectify any mistakes. 

Kludge Principle: Sometimes the best way to manipulate data is not elegant 
and seems to waste computer resources. A kludge is sometimes justifiable; 
the end CAN justify the means. (In information technology, a kludge 
[pronounced clue-J] is an awkward or clumsy patching together of a sedes 
of computer commands to make the data do what you want.) 

Default Principle: Know your software's default settings. Know whether 
these settings meet your needs. In particular, be aware of the default han­
dling of missing values in your software. Not being aware of such settings 
can produce study results that are inaccurate. For example, the SPSS com­
puter program has a default option that prints only the results of data analy­
ses in the output unless the user specifies that a log of what commands 
were used to compute the analyses is set prior to running the analysis. The 
same thing applies to receding variables and/or computing scores from 
several item variables. Not setting this option can result in not knowing 
what, if any, mistakes were made in undertaking data analyses. 

Complex Data Structure Principle: If your software can accommodate com­
plex data structures (eg, hierarchical relational databases), then you might 
benefit from using that software feature. Alternatively, you might prefer a 
kludge (eg, copying the same information to each record). The choice is 
yours as to how best to achieve your data entry purpose. 

Software's Data Relations Principle: Know whether your software can 
perform the following four relations and, if so, what commands are nec­
essary for it to do so: subsetting (Can subgroups be formed from the 
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larger dataset?), catenation (Can two subgroups of data be joined to form 
one larger dataset?), merging (Can two separate datasets of cases and/or 
variables be joined together to form one larger dataset?), and relational 
database construction (Can two separate datasets be joined together in a 
hierarchical fashion?). 

Software's Sorting Principle: Know how to perform a sort in your software 
and whether your software requires a sort before a by-group analysis or 
before merging. For example, prior to merging two datasets containing the 
same cases but different variables, the variable on which you will match 
cases (normally, the subject identification code) may need to be sorted in 
an ascending (smallest to highest numbers) or descending (largest to small­
est numbers) order in both data files. Thus, the larger dataset variables will 
be matched to the correct participant data record. 

Impossibillty/Implausibllity Principle: Use the computer to check for 
impossible and implausible data. This should be done routinely by comput­
ing frequencies and measures of central tendency (eg, descriptive statistics) 
on all study variables and examining them for mistakes and/or bugs. If 
found, correct them immediately and then save the dataset. 

Burstein's Data Sensibility Principle: Run your data all the way through to 
the final computer analysis and ask yourself whether the results make 
sense. Be prepared to decide that they do not, and hence, be prepared to 
treat the analysis not as final, but as another debugging step. You need to 
know your data as completely as possible so as not to be surprised by 
unexpected findings. 

Extant Error Principle: Data bugs exist. Even if you have corrected one or 
more mistakes in your dataset, it is still possible that you missed something. 
Thus, always maintain an attitude of healthy skepticism when examining 
your data analysis results. And don't be surprised if you find another bug 
that needs fixing. 

Manual Check Principle: Nothing can replace another pair of eyes to check 
over a dataset. Either check your data entry, input, and manipulation your­
self, or get somebody else to do it. Determine the criticality of your dataset 
before expending human resources to check it manually. Highly critical 
datas<:ts require manual checking regardless, possibly a priori, certainly a 
posteriori. Ideally, all datasets require manual checking. You should debug 
data by computer (Impossibility/Implausibility Principle) before you check 
it manually so that manual checking is easier. 

Error Typology Principle: Debugging includes detection and correction of 
errors. To ease correction, try to classify each error as you uncover it. The 
two most common types of error are entry errors and logic errors. An entry 
error, a mistake in typing one or more responses correctly, is quite common 
and, once detected, is simple to fix. Locate the respondent's identification 
number, then retrieve the original data record and (:orrect the mistake. In 
contrast, a logic error may be less detectable and more serious. For exam­
ple, suppose the scoring instructions for computing a total score for a 
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health status measure (10 items measured on a 5-point Likert scale) directs 
you to reverse-score (ie, make 1 = 5, 2 = 4, 3 = 3, 4 = 2, 5 = 1) one or 
more items prior to adding them together. You neglect to reverse-score 
these items and just add the items together, forming a health-starus score. 
The resulting sum is incorrect because some of the items are not correctly 
recoded prior to being tallied. 

In summary, Davidson's principles summarize the key dilemmas faced by 
researchers and the decisions they may have to make as they work with data des­
tined for statistical analyses. The thing to keep in mind is to avoid the worst-case 
scenario: that of finding yourself with data that are inappropriate for the intended 
statistical analyses that will achieve study aims. Thus, it is extremely important from 
the earliest possible moment to foresee the form of statistical analysis that is 
intended to achieve study aims. 

UNIVARIATE ANALYSES 

As our society has grown more dependent on statistics and other numeric h1forma­
tion, the need to present data in an appropriate way has become extremely impor­
tant. As the first step, researchers should examine each variable separately, whether 
those variables are demographic, prognostic, group membership, or outcomes. Uni­
variate analyses are helpful in cleaning and checking the quality of data that have 
been entered into a statistical computer program. The data values for each variable 
in the dataset must be examined visually or via computer. If the data indicate that a 
pregnant woman is 86 years old, then an error most likely occurred in data entry for 
that variable in that individual case. The researcher can then locate the individual 
case identification number in the dataset, check the origin3.1 test information, correct 
the data entry error, and save the new information in the data file. 

Univariate analyses are also helpful in examining the variability of data, describ­
ing the sample, and checking statistical assumptions before performing more com­
plex analyses. In some cases, data analysis may end here if the research questions 
can be answered solely by univariate analyses. 

PRESENTING DATA 

A set of data can be presented in a table or in a chart. Tables offer two main advan­
tages: They condense data into a form that can make them easier to understand 
(Morgan, Reichert, & Harrison, 2002); and they show many details in summary fash­
ion. But tables have one major disadvantage: Because the reader sees only numbers, 
the table may not be readily understood without comparing it with other tables. In 
contrast, charts speak directly to the reader; despite their lack of exact details, charts 
are very effective in giving the reader a picture of differences and patterns in a set 
of data (Wallgren et al., 1996). They are often a very effective way to describe, 
explore, and summarize a set of numbers (Morgan et al., 2002; Tufte, 1983). 
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Tables 

SECTION I Understanding the Data 

When data are organized into values or categories and then described with titles and 
captions, the result is called a statistical table. A researcher begins to construct a 
table by tabulating data into a frequency distribution-that is, by counting how often 
each value or category occurs in a variable or set of variables. 

For nominal and ordinal variables, the categories should be listed (in some natu­
ral order if possible) and then the frequencies indicated for each category. Table 1-1 
is an example of such a table, as produced by a computer, for the nominal variable of 
marital status. It is helpful to state the percentage in each category. Then the reader 
can quickly see that the majority of subjects in this sample were widowed (53.5%). 
The Percent column displays the percentage in each category, calculated on the total 
number of cases, including those with missing data on this variable. The next colunm, 
Valid Percent, provides the percentage of cases in each category based on the number 
of cases with no missing data. The Cum. Percent column refers to cumulative per­
centages, again with missing values excluded. By summing the valid percents (14.1 %, 
53.5%, 14.5%, and 12.4%), the cumulative percentage of 94.6% was formed, indicating 
that all but 5.4% of persons in this sample were either married or formerly married (ie, 
widowed, divorced, separated combined). 

For interval or ratio variables, an ordered array of values (Table 1-2) is usually 
the first step in constructing a table. This frequency distribution table might be 
termed a working table. If the difference between the maximum and the minimum 

I TABLE 1 -1 Example of F1 equency D1stnbutwn Produced by SPSS 12.0 for W111dotvs 
Manta! Status"',, Sample of246 Older Black Women' 

Program 

FREQUENCIES VARIABLES = MARITAL 

Output 
MARITAL Marital Status 

Value Label Value 

Married 1 

Widowed 2 

Divorced 3 
Separated 4 
Never married 5 
Total 

System missing 

Total 

Frequency 

34 

129 

35 
30 

13 

5 
246 

Percent 

13.8 

52.4 

14.2 

12.2 

5.3 

2.0 

100.0 

Valid Percent 

14.1 

53.5 
14.5 

12.4 

5.4 

100.0 

"Data from Wood, R. Y. (1997). The development and testing of video breast health kits for older 
women. National Cancer Institute Small Business Innovation Research (SBIR) Phase II R43 CA 63935-02. 

Cum. Percent 

14.1 

67.6 
82.2 

94.6 
100.0 



CHAPTER 1 Organizing and Displaying Data 13 

value exceeds 15, the researcher may want to group the data into classes or cate­
gories before forming the final table (this also may be true for some ordinal vari­
ables). In Table 1-2, the ages of older women go from 60 to 105, with a range of 45 
(ie, 105 - 60 = 45). Therefore, grouping the values in a meaningful way will make 
the data more comprehensible. 

As the next step, the computer printout for Table 1-3 shows a frequency distri­
bution for the same data, with the values grouped into 3 classes, each containing 
those women whose age fit within the category of young-old, old-old, and oldest -old, 
a common method of grouping older persons. The young-old group contained 173 
older women between the ages of 60 and 74.9 years; the old-old group had 50 older 
women between the ages of 75 and 84.9 years; and the oldest-old group had 

I TABLE 1 -2 Example of Frequency Otstnbutwn (Condensed) Pt ocluced by 
51' 55 12 ()for Wtndows 1\ge of Older Black Women 111 S<Jmple-

~rogmm 

FREQUENCIES VARIABLES = AGE 

Output 
AGE Older Women's Age 

Value L:rbel Frequency Value L:rbel Frequency 

60 14 78 7 
61 13 79 5 
62 15 80 2 
63 13 81 6 
64 11 82 6 
65 19 83 1 
66 11 84 4 
67 13 85 3 

68 7 86 3 
69 9 87 4 
70 5 88 6 
71 22 89 1 
72 4 90 1 

73 8 92 1 
74 9 94 1 
75 5 98 1 
76 4 100 1 

77 10 105 1 

•oata from Wood, R. Y. (1997). The development and testing of video breast health kits for older 
women. National Cancer Institute Small Business Innovation Research (SBIR) Phase II R43 CA 63935-02. 
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I TABLE 1-3 Example ofFrequenc; 01stubutwn (Condensed) Produced by SPSS 12.0 for 
Windows. Age Groups of Older Bl<1ck Women 111 Sample' 

Program 

RECODE AGE (60 through 74.9 = 1) (75 through 84.9 = 2) (85 through 105 = 3) INTO RECAGE. 
EXECUTE. 

Output 
RECAGE Older Women's Receded Age Group 

Value !.abel Value Frequency Percent Valid Percent Cum. Percent 

Young-Old Women 

(60-74.9 years) 1 173 70.3 70.3 70.3 
Old-Old Women 

(75-84.9 years) 2 50 20.3 20.3 90.7 
Oldest-Old Women 

(85-105 years) 3 23 9.3 9.3 100.0 

~oata from Wood, R. Y. (1997). The development and testing of video breast health kirs for older 
women. National Cancer Institute Small Business Innovation Research (SBIR) Phase II R43 CA 63935..02. 

23 women 85 or more years. Again, it is most helpful to know the percentage falling 
into each group. The groupings fall in the expected direction with the youngest 
young-old group being far more numerous than the oldest-old group. By looking at 
the "Cum. Percent" column, the reader can quickly see that almost 91% of the sam­
ple were less than 85 years old. 

By using the Recode command in a computer program, the researcher can eas­
ily form this new nominal level group (RECAGE) variable from the original interval 
level (AGE) variable. When creating such a variable, it is wise to create the new vari­
able by using the Recode into a Different Variable command rather than to perma­
nently change the original variable by recoding into the same variable. It is best to 
preserve the variable in its original form. 

Computer programs can also group variable values automatically; however, 
some programs have defaults for the interval width and the number of classes pro­
duced, resulting in an inconveniently constructed table. Most statistical programs let 
the researcher control the choice of interval and the number of classes. Using a mul­
tiple of five for the interval width is helpful because it is easier to think about num­
bers that are divisible by five. 

Authorities differ on their recommendations for the number of classes. Glass and 
Hopkins (1996) suggest there should be at least ten times as many observations as 
classes until there are between 20 and 30 intervals. Freedman et a!. 0991) suggest 
10 to 15 classes; Ott and Mendenhall (1990) suggest 5 to 20; and Freund (1988) sug­
gests 6 to 15 classes. Thus, it is up to the researcher to determine the number of 
intervals in a frequency distribution of a variable. Usually, the clustering that best 
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depicts the important fearures of the distribution of scores for the intended audience 
should be the major consideration. Too few or too many classes will obscure impor­
tant fearures of a frequency distribution. Some detail is lost by grouping the values, 
but information is gained about clustering and the shape of the distribution. 

The final presentation of the data from Table 1-3 depends on the format require­
ments of each journal or of the dissertation or thesis. If a table is included, it should 
be mentioned in the text of the research report. The discussion of a table should 
reinforce the major points for which the table was developed (Bums & Grove, 
2001). Researchers should comment on the important patterns in the table as well as 
the major exceptions (Chatfield, 1988), but should not rehash every fact in the table. 

Suggestions for the Construction of Tables 
for Research Reports 

The specific content of a table will vary depending on the statistical analysis you are 
summarizing and/or the hypothesis you are testing. It is wise to use a table only to 
highlight major facts. Most of the tables examined by researchers while analyzing 
their data do not need to be published in a journal. If a finding can be described 
well in words, then a table is unnecessary. Too many tables can overwhelm the rest 
of a research report (Burns & Grove, 2001). 

The table should be as self-explanatory as possible. The patterns and exceptions 
in a table should be obvious at a glance once the reader has been told what they are 
(Ehrenberg, 1977). With this goal in mind, the title should state the variable, when 
and where the data were collected (if pertinent), and the size of the sample. Head­
ings within the table should be brief and clear. Find out the required format for 
tables in the research report. if the report is being submitted to a particular journal, 
examine tables in recent past issues. Follow the advice about table format for pub­
lication in a manual of style, such as the Publication Manual of the American Psy­
chological Association (APA, 2001). Rudestam and Newton (1992) also suggest that 
tables should be numbered as whole numbers, such as Table 1, Table 2, and the 
like. They recommend not using a chapter number-table number form like Table 2.1 
or Table 2.2. However, in a book chapter or a dissertation, table titles need to con­
form to the publisher's or university's requirements. If the data being presented in 
the table are not original, notes, including the data source, should be included. 

Morgan and colleagues (2002) offer several principles that should guide table 
construction: 

1. Don't try to do too much in a table. Model tables after published exemplars of 
similar research to find the right balance for how much a table should contain. 

2. Use white space effectively so as to make the layout of the table pleasing to the 
eye and aid in comprehension and clarity. 

3. Make sure tables and text refer to each other; but not everything displayed in a 
table needs to be meotioned in the text. 

4. Use some aspect of the data to order and group rows and columns. This could 
be size (largest to smallest), cluonology (first to last), or to show similarity or 
invite comparison. 
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Charts 

SECTION I Understanding the Data 

5. If appropriate, frame the table with summary statistics in rows and columns to 
provide a standard of comparison. Remember when making a table that values 
are compared down columns more easily than across rows. 

6. It is useful to round numbers in a table to one or two decimal places because 
they are more easily understood when the number of digits is reduced. 

7. When creating tables for publication in a manuscript, they should be double­
spaced unless contraindicated by the journal. 

Although there are many different kinds of charts, most are based on several basic 
types that are built with lines, areas, and text. These include bar charts, histograms, 
pie charts, scatter plots, line charts, flow charts, and box plots. Charts can quickly 
reveal facts about data that might be gleaned from a table only after careful srudy. 
They are often the most effective way to describe, explore, and summarize a set of 
numbers (Tufte, 1983). Charts, the visual representations of frequency distributions, 
provide a global, bird's-eye view of the data and help the reader gain insight. 

Choosing which type of chart to use in a given siruation depends on what we 
wish to convey. When drawing a chart, Wallgren et al. (1996) suggest three things 
should be considered: data structure, variable type, and measurement characteris­
tics. The researcher should ask these questions: 

• Do the data represent one point in time, indicating cross-sectional data, or 
do they represent several points in time, called time series data? 

• What type of variable do we wish to illustrate? 
o Is the variable qualitative, consisting of words, or quantitative, consisting 

of numbers? 
o If quantitative, is the variable discrete, which can take on only certain 

values, or continuous, which can take all the numbers in a range? 
• What level of measurement is the variable of interest? 

Answering these questions will help the researcher choose the type of chart that best 
illustrates a variable's characteristics. 

BARCHART 

A bar chart, the simplest form of chart, is used for nominal or ordinal data. When 
constructing such charts, the category labels usually are listed horizontally in some 
systematic order, and then vertical bars are drawn to represent the frequency or per­
centage in each category. A space separates each bar to emphasize the nominal or 
ordinal nature of the variable. The spacing and the width of the bars are at the 
researcher's discretion, but once chosen, all the spacing and widths should be equal. 
Figure 1-1 is an example of a bar chart for ordinal data. If the category labels are 
lengthy, it may be more convenient to list the categories vertically and draw the bars 
horizontally, as in Figure 1-2. 

Bar charts also make it easier to compare univariate distributions. Two or 
more univariate distributions can be compared by means of a cluster bar chart 
(Fig. 1-3). Current computer graphics, statistics, and spreadsheet programs offer 
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50 

ETHICAL ISSUES SCALE 

ITEM 8 

Frequently 

AcnNG AGAINST YOUR OWN PER50NAljREUGIOUS VIEWS 

AGURE 1-1. Degree of 
frequency that nurses 
experience the ethical issue 
of acting against their personal 
or religious beliefs. (Data from 
Fry, 5., & Duffy, M. [2000]. 
Ethics and Human Rights 
in Nursing Practice: A Study 
of New England Registered 
Nurses. Chestnut Hill, MA: 
Nursing Ethics Network & The 
Center for Nursing Research, 
Boston College.) 

many tempting patterns for filling in the bars. The legend explaining Figure 1-3 is 
outside the chart to avoid clutter (Cleveland, 1985). Wallgren et al. (1996) recom­
mend filling bars with either shading of various depths or simple dot or line pat­
terns, avoiding complex patterns, slanting lines in different directions, or a com­
bination of horizontal and vertical lines in the same chart. 

Acute Care 
Critical Care 
Gerontology 

Post Anesthesia 
w Perin~ 

~ Clinical Research 
~ Family Nursing 
o. Neonatal 
...I Psych/Mental Health 
~ Community Health 
Z General Practice 
U
::J 

Orthopedics 
Primary Care 

Operating Room 
Medical 

CLINICAL PRACTICE AREA 

PERCENT 

AGURE 1 ~2. Major clinical 
practice area of registered 
nurses working in the six 
New England states in 1997 
(N = 2,090). (Data from Fry, 
5., & Duffy, M. [2000]. Ethics 
and Human Rights in Nursing 
Practice.- A Study of New Eng­
land Registered Nurses. Chest­
nut Hill. MA: Nursing Ethics 
Network & The Center for 
Nursing Research, Boston Col­
lege.) 
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Diploma Bachelor Degree 
Associate Degree Post Bac 

RN HIGHEST EDUCATION 

Employment 

.FulltimeRN 

~ Part time RN 

• Self employed 

FIGURE 1-3. Employment status by RN highest level of education. (Data from Fry, S., & 
Duffy, M. [2000[. Ethics and Human Rights in Nursing Practice: A Study of New England 
Registered Nurses. Chestnut Hill, MA: Nursing Ethics Network & The Center for Nursing 
Research, Boston College.) 

PIE CHART 

The pie chart, an alternative to the bar chart, is simply a circle that has been par­
titioned into percentage distributions of qualitative variables. Simple to construct, 
the pie chart has a total area of 100%, with 1% equivalent to 3.6• of the circle. 
Figure 1-4 is an example of a pie chart displaying RNs' need for ethics and human 
rights education. 

When constructing a pie chart, Wallgren et a!. (1996) recommend the following: 

• Use the pie chart to provide overviews: readers find it difficult to get precise 
measurements from a circle. 

• Place the different sectors in the same order as would be found in the bar 
chart, beginning either in an ascending or a descending order. Retain the 
order between the variables. 

• Use the percentages corresponding to each category rather than the 
absolute frequency of each category. 

• Read the pie chart by beginning at the 12 o'clock position and proceeding 
clockwise. 

• Use no more than six sectors in a given pie chart; clarity is lost with more 
than six sectors. 
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>Moderate need 

AGURE 1-4. New England RNs' reported need for ethics and human rights education. 
(Data from Fry, S., & Duffy, M. [2000]. Ethics and Human Rights in Nursing Practice, A 
Study of New England Registered Nur.ses. Chestnut Hill, MA Nursing Ethics Network & The 
Center for Nursing Research, Boston College.) 

• Use a low-key shading pattern that does not detract from the meaning of 
the pie chart. 

• If using more than one pie chart, give the number on which the percent­
ages are based for each circle. 

• Make sure the sum of the pie chart sectors equals 100%. 

HISTOGRAM 

Histograms, appropriate for interval, ratio, and sometimes ordinal variables, are sim­
ilar to bar charts, except the bars are placed side by side. The bar length represents 
the number of cases (frequency) falling within each interval. Histograms are often 
used to represent percentages instead of, or in addition to, frequencies because per­
centages are more meaningful than simple number counts. Therefore, each his­
togram has a total area of 100%. 

The first decision is to select the number of bars. With too few bars, the data will 
be clumped together; with too many, the data will be overly detailed. Figure 1-5 
shows how the choice for the number of bars affects the appearance of a histogram. 
The top chart presents a jagged appearance; the bottom chart clumps the data into 
only four bars and makes the data seem skewed. The middle chart, with 10 bars, 
presents a smoother appearance. 

Computer programs are handy for a preliminary chart of a variable, but the 
researcher should be aware of built-in defaults and should think about the adjustments 
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NUMBER OF CORRECT LUMPS FOUND 

NUMBER OF CORRECT WMPS 

FIGURE 1-6- Number of 
correct breast lumps identified 
by older Black women (N = 
246). (Data from Wood, R Y. 

[19971. The development and 
testing of video breast health 
kits for older women. 
National Cancer Institute 
Small Business Innovation 
Research (SBffi) Phase II R43 
CA 63935-02.) 

that are necessary. The advice given in the previous section for constructing frequency 
distribution< for interval or ratio variables is helpful here. For example, if the difference 
between the maximum and minimum values exceeds 15, the researcher should con­
sider grouping the data. The interval and the starting point should be divisible by five. 
Most histograms have 5 to 20 bars. 

For interval or ratio variables that are discrete, the numerals representing the 
values should be centered below each bar to emphasize the discrete nanue of the 
v.ariable. Figure 1-6 illustrates a histogram for the discrete variable of number of cor­
rect lumps identified by older Black women. For continuous variables, the numerals 
representing the values should be placed at the sides of the bars to emphasize the 
continuous nature of the distribution.' Figure 1-7 depicts a histogram for the contin­
uous variable of number of cigarettes smoked per day for a national sample of 
communiry-dwelling adults. Tick marks are placed outside the data region to avoid 
clutter (Cleveland, 1985). 

Once the number of bars has been determined, the next decision concerns the 
height of the vertical axis. If the chart is horizontal, Tufte 0983) recommends a height 
of approximately half the width. Other authorities, such as Schmid 0983), recom­
mend a height approximately two thirds to three fou1ths the width. The reason for 
these recommendations is the different effect that can be produced by altering the 
height of a chart. Figure 1-8 shows the different impressions that can be created for 

1The grouping interval of "25 to 29" has a lower limit of 25 and an upper limit of 29. These are called 
the written limits. The real or malhematical limits are understood to extend half a unit above and below 
the written class limits. For convenience, researchers almost always use the written class limits in tables 
and charts. 



22 SECTION I Understanding the Data 
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FIGURE 1-7. Number of cigarettes smoked per day in a national sample of 16,197 
community-dwelHng adults. (Data from US Department of Health and Human Services 
[DHHS]. [1996]. "!bird National Health and Nutrition Examination Suroey, 1988-1994, 
NHANES III Laboratory Data File [CD-ROM]. US Department of Health and Human Services. 
National Center for Health Statistics. Public Use Data File Documentation Number 76200. 
Hyattsville, MD: Centers for Disease Control.) 
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the same data by a tall, narrow chart and by a flat, wide chart. The tall, narrow chart 
seems to e1:11phasize the clustering of the data in the middle, whereas the flat, wide 
chart appears to emphasize the scatter of the data to the right. 

POLYGON 

The polygon, a chart for interval or ratio variables, is equivalent to the histogram 
but appears smoother. For any set of data, the histogram and the polygon will have 
equivalent total areas of 100%. The polygon is constructed by joining the midpoints 
of the top of each bar of the histogram and then closing the polygon at both ends 
by extending lines to imaginary midpoints at the left and right of the histogram. 
Figure 1-9 illustrates a polygon superimposed on a histogram. In the process of 
construction, triangles of area are removed from the histogram, but congruent tri­
angles are added to the polygon. Two such congruent triangles are shaded in 
Figure 1-9 to show why the areas of the two types of chart are equivalent. 

Polygons are especially appropriate for comparing two univariate distributions 
by superimposing them (Fig. 1-10). The percentages were used on the vertical scale 
because the sizes of the two samples differed. 

WHAT TO LOOK FOR IN A HISTOGRAM OR POLYGON 

A chart can help us see quickly the shape of a distribution. Frequency distributions 
have many possible shapes. Often they have a bell-shaped appearance, as in the 
computer printout in Figure 1-11. In this case, older women rated themselves on the 
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NUMBER OF PREGNANCIES 

AGURE 1-9. Polygon superimposed on histogram. The two shaded triangles are congruent. 
(Data collected with a grant funded by the National Institute of Nursing Research, NR-D2867. 
P.l., Brooten, D. University of Pennsylvania School of Nursing, Nurse Home Care for High 
Risk Pregnant Womeno Outcome and Cost.) 
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FIGURE 1-10. Comparison 
of depression scores for 
patients having surgical 
procedure X (N = 104) and 
patients having surgical 
procedure Y (N= 61). 

RGURE 1-11. Example of a 
histogram produced by SPSS 
12.0 for Wmdowso SF-36 
Transformed Vitality Scores 
from a sample of 439 older 
women. (Data from Wood, 

Std. Dev- 22.17 R. Y. [1997]. The. development 
Mean - 61.6 and testing of video breast 
N - 439.00 health kits for older women. 

National Cancer Institute 
SmaU Business Innovation 
R~search (SBIR) Phase II R43 
CA 63935-02.) 
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SF-36 MENTAL HEALTH SCORES 

AGURE 1-12. Relative 
frequency distribution of 
SF-36 transformed men1al 
health scale scores from a 
sample of 439 older women. 
(Dala from Wood, R. Y. [1997]. 
The development and testing 
of video breast health kits for 
older women. National Cancer 
Institute Small Business 
Innovation Research (SBIR) 
Phase n R43 CA 63935-02.) 

Vitality subscale of the Short Form-36 Health Survey (SF-36), consisting of four 
items, with each item rated for evidence of vitality, energy, or fatigue on a 6-point 
scale, transformed so that scores ranged from 1 to 100 for comparison purposes. 
Technically, such a scale is ordinal, because there is no accepted physical unit of 
vitality, and the zero point is arbitrary. An ordinal scale with such a large range, 
however, is usually treated as interval in the research literature. In Figure 1-11, the 
frequency count is given at the left. The programmer chose an interval width of 10 
and a starting point of 0. Thus, the first class is 0 to 10. In addition, the program­
mer instructed the computer program to plot the bell-shaped (normal) curve atop 
the histogram with a Line. The reader can then visually compare the distribution 
of transformed SF-36 vitality scores with the theoretical bell-shaped, or normal, 
curve. 

Distributions also may be skewed, as in Figure 1-12. Occasionally, data may 
clump at several places, as in Figure 1-13. 

Charts also can be he! pful in spotting where the data cluster, how the data are 
scattered around the clustering points, whether there are far-out observations that 
may be outliers, and whether there are gaps in the data. These are the kinds of fea­
tures that researchers need to know, and they become immediately evident with 
simple graphic representation (Cohen, 1990). With the assistance of a computer, 
researchers have no excuse for failing to know their data Qacobsen, 1981). As with 
tables, all charts included in a research report should be cited in the text, and the 
important features of the distribution should be discussed. 
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FIGURE 1-13. Relative 
frequency distribution of the 
highest degree achieved by 
registered nurses. (Data from 
Fry, S., & Duffy, M. [2000]. 
Ethics and Human Rights in 
Nursing Practice.- A Study of 
New England Registered 
Nurses. Chestnut Hill, MA: 
Nursing Ethics Network & 
The Center for Nursing 
Research, Boston College.) 

GENERAL SUGGESllONS FOR CONSTRUCTING CHARTS 

The purpose of a chart is to promote understanding without distorting the facts; 
therefore, the chart should make the desired point honestly. Because gross misuses 
of charts are not generally found in respected research journals, some researchers 
believe that they need not pay attention to the construction of their charts because 
editors and reviewers will tell them how to fix the charts. This is not true: Read 
some of the references cited on developing charts, and follow their advice to avoid 
having your research report rejected. 

Wallgren et a!. (1996) advise researchers to ask themselves the following ques­
tions after completing a chart: 

• Is the chart easy to read? Simplicity is the hallmark of a good chart. What 
you want to display in a chart should be quickly and clearly evident. Keep 
in mind the target audience for whom you are constructing the chart. Keep 
grid lines and tick marks to a minimum. Avoid odd lettering and ornate 
patterns (Schmid, 1983). 

• Is the chart in the right place? Locate the chart close to the place in the 
text where the topic is discussed. Make sure the chart is well positioned on 
the page. 

• Does the chart benefit from being in color (H color Is used)? Color 
should have a purpose; it should not be used solely for decorative reasons. 

• Have you tried the chart out on anybody? Try the chart out on someone 
whom you consider to correspond to the target group before you make the 



SUMMARY 

CHAPTER 1 Organizing and Displaying Data 27 

final diagram. Ask that person questions about the chan to gain information 
on h~w the person perceives the chart. 

Wallgren et al. offer the caveat that "a poor chart is worse than no chart at all" 0996, 
p. 89). 

The first steps toward understanding data are univariate analyses. The . researcher 
should study each variable separately by means of tables and charts. The type of table 
or chart varies according to the type of measurement scale. For nominal variables, the 
table should be a simple listing of categories with corresponding frequencies and per­
centages, and the bar chart is appropriate for graphic display. For interval or ratio vari­
ables, it may be necessary first to group the data into appropriate numeric intervals 
before constructing a frequency table, histogram, or polygon. For ordinal variables, the 
researcher must decide whether the values should be treated as nominal data or as con­
tinuous (interval or ratio) data. Once this decision has been made, the researcher can 
then apply the rules for either nominal or interval and ratio variables. The best tables 
and charts are self-explanatory and present data in a clear and straightforward manner. 

ApplicationExercisenmJ Results 

Genera/Introduction 

Appendix G contains a survey instrument that was developed at Boston College's William F. 
Connell School of Nursing for doctoral students to gather data for use in a statistics class. Each 
student is responsible for getting 10 people to fill out the questionnaire. Students are asked 
to have vari~ty in terms of the respondents' gender, age, and so forth. We also ask them to try 
to minimize missing data by checking questionnaires for completeness. 

The students then enter the data from their 10 subjects into a data file, called a dataset. 
They examifie a printout of file information, run frequencies, and examine the output care­
fully to be sure they have entered their data correctly. The students make corrections as nec­
essary, and then their data files are merged and we provide them with a large dataset they can 
use for all their homework assignments. 

The CD at the back of this book contains data collected by these students on 701 respon­
dents. If the same survey is used for several years, a fairly substantial dataset can be developed. 
The reader may use our survey form, collect data, and add it to the dataset we have provided. 

When the students collect and enter data and then clean the datasets, they achieve a much 
better understanding of data and how to manage it. Although our students use their dataset for 
all homework exercises, other large datasets that we get from researchers in the school are 
used for the midterm and final exams. Each student is provided with data from a randomly 
drawn subset of one of these large datasets. Thus, each student has a slightly different sample 
of respondents but the same variables so they can answer the same questions on the exam. 
Their answers will differ because they have different cases in their sample dataset. 

The major dataset for the exercises throughout the book is named MUNR004.SAV and 
was created in SPSS for Windows, version 12.0. For the purpose of this book, we have posed 
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specific research questions for students to answer. In our courses, however, we often just ask 
the students to state a research question or hypothesis that can be answered using their dataset 
and the statistical technique being studied that week. They then run the analysis and write up 
the results. We have found that srudents need mOre guidance in how to write the results in a 
manner that would be acceptable for a research journal than in how to run the analysis. We 
have not provided step-by-step guidance in the use of statistical software for several reasons: 
so many statistical packages are available, students are more computer literate today, and 
statistics software is very user-friendly. When we first began teaching doctoral students how to 
use SPSS for Windows several years ago, it took a full-day workshop to accomplish this task. 
Now, it takes students alxmt 1 hour to use later versions of SPSS for Windows. 

Exercises 

1. Access the dataset ca1Jed MUNR004.SAV, which contains clara collected using r:h.e survey form 
contained in Appendix G. Either bring it into SPSS or convert it into a file for SAS or whatever 
software you are using. Print the dictionary, which contains a list of the variables, formats, and 
labels. In most versions of SPSS for Windows, this is done by clicking on File Info, then on 
Display Data File Information, then on Working File. Once the file is in the output screen, it 
can be printed from ih.e File menu. 

2. Compare the file information with the survey form in Appendix G. Note that the variable 
names have been select:ed to reflect each variable, making it easy to recognize them when 
working with the file. Variable labels and value labels have been added to enhance the 
output. Look for any discrepancies between ilie swvey form and the file information. 

3. Produce charts/graphs. Many options are available for producing charts in statistical software 
programs. They may be produced within specific techniques and in separate graphics sec­
tions. We will confine ourselves to requesting graphics ihat are available with the specific tech­
niques. The following can be requested as part of the output from frequendes in most 
software programs. Within the frequencies program, request a bar gmph for GENDER, a his­
togmm for SATCURWf, and a histogram with a polygon (normal curve) for SATCURWf. 

Results 

1. Exercise Figure 1-I contains a portion of the dictionary. 

2. If you look carefully, you should note the following: 
a. Compared to what is printed in the survey form in Appendix G, the value labels for the 

following items from the Inventory of Personal Anitudes (IPPA) have been reversed: I, 
2, 4, 6, 8, 13, 15, 20, 22, 24, 27, and 29. This had to be done to prepare these items for 
scoring the scale. For example, look at item 1. On the questionnaire, we see that a very 
high level of energy is scored 1 and a very low level is scored 7. Because the inventory 
measures positive attitudes, the originators (Kass et al., 1991) reversed this item before 
adding it to the scale. We have already done the reverse-scoring for you. We receded 
all of these items so that 1 = 7, 2 = 6, 3 = 5, 4 = 4, 5 = 3, 6 = 2, and 7 = 1. Thus, with 
item I, if someone checked a 1, ic would now be scored a 7. We also reversed the value 
labels to reflect the new scoring. 

If you add your own data to our dataset, recode these items and be sure the value 
labels are correct before adding rhem to our dataset. If you add your data to the dataset 
first, then reverse-score the IPPA items, you will also change the previously reverse­
scored items back to their original, unreversed-score values. 

b. 1hree "extra" variables are listed in the dictionary. These new variables follow the 30 
lPPA items. 
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Name 

CODE 

GENDER 

List of variables on the working file 

subject's identification number 
Print Por,mat: FJ 
Write Po~t: PJ 

gender 
Print Po~t: Pl 
Write Format: 1"1 

Value 
0 
1 

Label 
male 
female 

AGE subject's age 
Print Format: PJ 
Write Format: FJ 

~ITAL marital status 
Print For,aat: Pl 
Write Po~t: Pl 

DEPRESS 

I PAl 

IPA2 

Value 
1 
2 
3 
4 
5 
6 

Label 
Rever Married 
Marrie.d 
Livinq with Significant Other 
Separated 
Widowed 
Divorced 

depressed state of mind 
Print Format: Fl · 
Write ronu.t: Fl 

Value Label 
1 Rarely 
2 Someti..mes 
3 Often 
4 Routinely 

energy level 
Print Format: F8 
Write Fo~t: PI 

Value 
1 
7 

Label 
very low 
very high 

reaction to pressure 

Print Format: Fl 
Write Fo~t: Pl 

Value 
1 
7 

Label 
I ~t tense 
I remain calm 

EXERCISE FIGURE 1-1. A portion of the SPSS dictionary. 

Position 

1 

2 

3 

4 

19 

20 

29 

9 
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FREQUENCIES 
VARIABLES=mari[aJ 
/BARCHART FREQ 
/ORDER~ ANALYSIS 

Frequencies 
Statistics 

MARITAL marital status 

N Valid 688 
Missing 13 

Valid 1 never married 

2 married 

3 living with 
significant other 

4 separated 

5 widowed 

6 divorced 

Total 

Missing System 

Tmal 

marital status 

400 

300 

!; 
c • 200 , 
~ 
~ 

100 

0 

MARITAL marital status 

Frequency Percent 

230 32.8 

346 49.4 

44 6.3 

13 1.9 

20 2.9 

35 5.0 

688 98.3 

13 1.7 

701 100.0 

Cumulative 
Valid Percent Percent 

33.4 33.4 

50.3 83.7 

6.4 90.1 

1.9 92.0 

2.9 94.9 

5.1 100.0 

100.0 

EXERCISE AGURE 1-2. Frequendes for marital status (MARITAL) and bar graph. 



FREQUENCIES 
VARIABLES=qolcur 
/HISTOGRAM 
/ORDER~ ANALYSIS 

Frequencies 
Statistics 
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QOLCUR quality of life in past month 

N Valid 699 
Missing 2 

QOI.CUR quality of life in past month 

31 

Cumulative 

Valid 1 very dissatisfied, unhappy 
most of time 

2 generally dissatisfied, unhappy 

3 sometimes fairly satisfied, 
sometimes fairly unhappy 

4 generally satisfied, pleased 

5 very happy most of time 

6 extremely happy, could not be 
more pleased 

Total 

Missing System 

Total 

200 

li" 
< 
~ 

l 
100 

0 

quality of lite ln past month 

1.0 2.0 3.0 4.0 5.0 6.0 

quali[)' of life in pas[ month 

Frequency Percent 

8 
r; 

113 

238 
245 

68 

699 
2 

701 

Std. Dev- 1.04 
Mean- 4.3 
N- 699.00 

1.1 

3.9 

16.1 

34.0 

35.0 

9.7 

99.7 

.3 
100.0 

Valid Percent Percent 

1.1 1.1 

3.9 5.0 

16.2 21.2 

34.0 55.2 

35.1 90.3 

9.7 100.0 

100.0 

EXERCISE FIGURE 1-3. Frequencies for quality of life in the past month (QOLCUR) and 
two histograms. 
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CONFID is the sum of the following IPPA itemso 2, 5, 7, 10, 14, 15, 16, 17, 18, 22, 
24, 26, and 29. It is defined as self-confidence during stressful situations. Because it 

includes 13 items and each item is rated qn a scale from 1 to 7, the potential range of 
scores for CONFID is 13 to 91. 

LIFE is the sum of the following IPPA itemso I, 3, 4, 6, 8, 9, 11, 12, 13, 19, 20, 21, 
23, 25, 27, 28, and 30. It is defined as Hfe purpose and satisfaction and includes 17 
items, with a potential range of scores of 17 to 119. 

IPPATOT is the sum of all 30 items and is the total score on the IPPA. The poten­
tial range of scores is 30 to 210. 

3. Exercise Figure 1-2 contains the frequencies for marital status (MARITAL) and its associated 
bar graph. Exercise Figure 1-3 contains the frequencies for quality of life in the past month 
(QOLCUR), and the histogram with the normal curve superimposed. 



Univariate Descriptive 
Statistics 

Objectives for .CIIapter 2 ''' 

Mary E. Duffy and 
Barbara S. Jacobsen 

Afl:er reading this chapter, you should be able to do the following: 

1. Define measures of central tendency and dispersion. 
2. Select the appropriate measures to use for a particular dataset. 
3. Discuss methods to identifY and manage outliers. 
4. Discuss methods to handle missing data. 

Although charts may bring facts to life vividly, the information they present for our 
inspection is often inexact. Frequency distribution tables provide many details, but 
often a researcher will want to condense a distribution further. After the data have 
been organized, quantitative measures are frequently calculated to capture the 
essence of the four basic characteristics of a distribution: central tendency, variabil­
ity, skewness, and kurtosis. These statistics may be used not only in a descriptive 
summary, but also in statistical inference. 

Symbols and formulas for descriptive statistics vary depending on whether one 
is describing a sample or a population. As mentioned in Chapter 1, a population 
includes all members of a defined group; a sample is a subset of a population. Char­
acteristics of populations are called parameters; characteristics of samples are called 
statistics. To distinguish between them, different sets of symbols are used. Usually, 
lowercase Greek letters are used to denote parameters, and Roman letters are used 
to denote statistics. 

33 
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MEASURES OF CENTRAl TENDENCY 

Mean 

The typical value of a variable is summarized using measures of central tendency. 
These statistics, commonly called averages, describe where the values of a variable's 
distribution cluster. The most commonly reported measures of central tendency are 
the mean, the median, and the mode. 

The mean, the best known and most widely used average, describes the center of a 
frequency distribution. The mean of a sample' is represented symbolically by X, 
which is read "X bar." Many journals simply use "M" to represent the mean. 

To compute the mean, add up all the values in the distribution and divide by 
the number of values. Expressed as a formula, the sample mean is defined as: 

M = ~X/N 

The uppercase Greek letter sigma (L) means "the sum of." If the letter X represents 
a single quantitative value in a distribution, then !X means "sum up all the values." 

For example, the following list of values for length of stay (in hours) in the hos­
pital in the past year for a sample of older women has 10 entries: 8, 10, 10, 18, 24, 
29, 36, 48, 60, 72. The mean is: 

8 + 10 + 10 + 18 + 24 + 29 + 36 + 48 + 60 + 72 = 315/10 
= 31.5 hours 

In this example, the mean is located near the middle of the 10 values. It is clear 
from the formula and the example that each value in the distribution contributes to 
the mean. Because the mean is influenced by all of the data points, it is not appro­
priate as a descriptive statistic for a variable when not all the data points are known. 
For instance, not everyone with cancer will have a recurrence of that disease; 
therefore, some of the values of the variable "time to recurrence" may be absent or 
"censored." 

Any extreme values in the distribution also influence the mean. For example, in 
the previous distribution relating to length of stay in hours in the hospital for the 
group of older women, suppose the value of 72 hours was instead 224 hours. The 
new mean would be 

8 + 10 + 10 + 18 + 24 + 29 + 36 + 48 + 60 + 224 = 467/10 
= 46.7 hours 

This mean would not be located in the middle of the 10 values; only three 
women would have a length of hospital stay greater than the mean. Thus, the mean 
works best as an average for symmetrical frequency distributions that have a single 
peak, more commonly called a normal distribution. 

1The mean of a population (N) is represented by [he lowercase Greek letter mu (J.t). The fonnula is the 
same as r:hat for dle sample mean. 
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I TABlE 2-1 Demonstration ofSevemllmpo, tant Pro pet t1es of rhe Mean 

X X-M (X- M)' 

4 4-6 = -2 (-2)' = 4 

4 4-6 = -2 (-2)' = 4 

10 10-6 = +4 (+4)2 = 16 

5 5-6= -1 (-1)'= 1 

7 7-6 = +1 (+1)'= 1 

:U= 30 l(X-M)=O lCX- M)2 = 26 

N=5 sum of squares 

M=6 

The mean has several other interesting properties. First, for any distribution, the 
sum of the deviations of the values from the mean always equals zero. This helps to 
explain why the mean is the center of a distribution. Table 2-1 demonstrates this 
property. The mean (6) is subtracted from each value to form deviations (X - M). 
These deviations from the mean sum to zero. If any value other than the mean is 
subtracted from each value, the sum of the deviations will not be zero. 

A second property of the mean relates to the sum of the squared deviations­
that is, .l(X - M)2. In Table 2-1, each of the deviations from the mean has been 
squared, and the sum of these squared deviations equals 26. This sum, called the 
sum of squares in statistics, is at a minimum; that is, it is smaller than the sum of 
squares around any other value. If any value other than the mean (6) is subtracted 
from each value and squared, the total will exceed 26. This characteristic of the 
mean underlies the idea of least squares, which is important in later chapters. 

Third, because the mean bas a formula, it is algebraic and can be manipulated 
in equations. For example, if two or more means are available from samples of dif­
ferent sizes, a mean of the total group can be calculated. By transposing terms in the 

· formula for the mean, the following shows that the sum of the values is equal to the 
mean multiplied by the size of the sample. 

1;X = Mn 

Therefore, a formula for a combined mean for two samples (which can be eas­
ily extended to include more than two samples), weighted according to sample size, 
logically follows: 

Mtotal = M1n1 + Mznz/nl + llz 

Finally, when repeatedly drawing random samples from the same population, 
means will vary less among themselves and less from the true population mean than 
other measures of central tendency. Thus, the mean is the most reliable average 
when making inferences from a sample to a population. 
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Median 

Mode 

SEen ON I Understanding the Data 

The mean is intended for inte1val or ratio variables when values can be added, 
but many times it is also sensible for ordinal variables. Computer programs, how­
ever, will compute means for nominal level variables, reporting such uninterpretable 
results for a sample as "the mean gender = 0.75." 

The median, the middle value of a set of ordered numbers, is the point or value 
below which 50% of the distribution falls. Thus, 50% of the sample will be below the 
median regardless of the shape of the distribution. The median is sometimes called 
the 50th percentile and symbolized as P 50 . It may also be conceived as the bisector 
of the total area of the histogram or polygon. There is no algebraic formula for the 
median, just a procedure: 

1. Arrange the values in order. 
2. If the total number of values is odd, count up (or down) to the middle value. If 

there are several identical values clustered at the middle, the median is that 
value. 

3. If the total number of values is even, compute the mean of the middle values. 

In the previous example relating to length of stay of older women in the hospi­
tal, the 10 values, arranged in order, were 8, 10, 10, 18, 24, 29, 36, 48, 60, 72. Count­
ing to the center of these 10 entries (an even number), the two middle values are 24 
and 29. Thus, the median is (24 + 29)/2 = 26.5. Note that the mean for these data 
was 31.5, slightly higher than the median. 

From the procedure, it is clear that every value does not enter into the compu­
tation of the median; only the number of values and the v~lues near the midpoint of 
the distribution enter the computation. If the value of 72 is changed to 224 in the 
previous example, the new distribution is 8, 10, 10, 18, 24, 29, 36, 48, 60, 224. The 
median of this distribution is still located midway between 24 and 29 and is still 
26.5 hours. Thus, the median is not sensitive to extreme scores. It may be used with 
symmetrical or asymmetrical distributions, but is especially useful when the data are 
skewed. However, this property of not summarizing all values in a distribution is 
also the median's chief shortcoming: it means that the median cannot be alge­
braically derived. The median merely represents the point in a distribution below 
which 50% of the scores fall. 

The median is appropriate for interval or ratio data and for ordinal data but not 
for nominal data. It can be used for open-end or censored data, such as "time to 
recurrence," if more than half of the sample has contributed a value to the 
distribution. 

The mode, the most frequent value or category in a distribution, is not calculated but 
is simply spotted by inspecting the values in a distribution. In the previous example 
of length of hospital stay in hours, the 10 entries were 8, 10, 10, 18, 24, 29, 36, 48, 
60, and 72. The mode for this distribution is 10 because that score occurs most 
frequently. 
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11.00 

1.00 3.00 5.00 7.00 9.00 12.00 

NUMBER OF SIBLINGS 

FIGURE 2-1. Relative frequency distribution of number of siblings a child has. 
(Data collected with a grant funded by the National Institute of Nursing 
Research, ROl NR04838-01A2. P.l., Vessey, J. (2000). Development of the CAIS, 
Child-Adolescent Teasing Scale. The William F. Connell School of Nursing, 
Boston College.) 
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If all scores in a distribution are different, the mode does not exist. If several 
values occur with equal frequency, then there are several modes. If the values of a 
distribution cluster in several places but with unequal frequency, then there are pri­
mary and secondary modes. For example, when discussing the bar chart showing 
the frequency distribution of number of siblings a child has in Fig. 2-1, it is helpful 
to note that the primary mode was 1 (the midpoint of the second bar) with a sec­
ondary mode of 2 (the midpoint of the third bar). Alternatively, the primary mode 
for Fig. 2-1 could be reported as 1 sibling and the secondary mode 2 siblings. 

For strictly nominal-level variables, the mode is the only appropriate measure of 
central tendency. It is reported as the modal category. For instance, in Fig. 2-2, the 
modal category for data collection site is • Albuquerque, NM." 

The mode can also be used with interval, ratio, or ordinal variables as a rough 
estimate of central tendency. Obtaining the mode for numeric data consists of noting 
which value occurs most frequently. The modal value is the most frequently occurring 
actual value in the distribution, not the value that has the largest frequency of scores. 

Comparison of Measures of Central Tendency 

The mean is the most common measure of central tendency. It has a formula and is 
the most trustworthy estimate of a population average. Generally, researchers prefer 
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AGURE 2:..2. Data collection site, N = 764. (Data colJected with a grant 
funded by the National Institute of Nursing Research, ROl NR04838. P.l., 
Vessey,]. (2000). Development of the CATS: Child-Adolescent Teasing Scale. 
The w·illiam F. Connell Schooi of Nursing, Boston College.) 

to use the mean, unless there is a good reason for not doing so. The most com­
pelling reason for not using the mean is a distribution that is badly skewed. The 
effect of extreme values on the mean diminishes as the size of the sample increases; 
therefore, another good reason for not using the mean is a small sample with a few 
extreme values. The mean is best when used with distributions that are reasonably 
symmetrical and that have one mode. 

The median is easy to understand as the 50th percentile of a distribution or the 
bisector of the area of a histogram. It has no formula but is calculated by a counting 
procedure, and is usually produced by statistical computer programs. The median 
may be used with distributions of any shape but is especially useful with very non­
symmetrical distributions because it is not sensitive to skewness. 

The main use of the mode is for calling attention to a distribution in which the val­
ues cluster at one or more places. It can also be used for making rough estimates. In 
addition, the mode is the only measure of central tendency available for nominal data. 

When a distribution has only one mode and is symmetrical, the mean, median, 
and mode will have, or very nearly have, the same value. In a skewed, or nonsym­
metrical, distribution like that in Fig. 2-3, the mode is the value under the high point 
of the polygon, the mean is pulled to the right by the extreme values in the tail of 
the distribution, and the median usually falls in between. Thus, if the mean is greater 
than the median, then the distribution is positively skewed, with the mean being 
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Mode Median 

FIGURE 2-3. Sketch of frequency polygon for a distribution skewed to the right, 
indicating the relative positions of mean, median, and mode. 
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FIGURE 2-4. Graph illustrating a distribu­
tion (cate at which patients seek medical 
care for coronary symptoms as a function 
of time from onset of symptoms) in which 
mean, median, and mode are quite differ­
ent. (From Hackett, T. P., & Cassem, N. H. 
[19691. Factors contributing to delay in 
responding to the signs and symptoms of 
acute myocardial infarction. American 
journal of Cardiology, 24, 653. With per­
mission from Excerpta Medica Inc.) Mean, 
10.6 hours; median, 4 hours; mode, 1 
hour. 
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dragged to the right by a few high scores. If the mean is less than the median, then 
the distribution is negatively skewed, with th.e mean being pulled to the left by a 
small number of low scores. 

Weisberg (1992) points out that it is not always necessary to select only a single 
measure of central tendency because these statistics provide different information. 
Sometimes it ls useful to examine multiple aspects of a distribution. An example 
from a research journal is presented in Fig. 2-4. In this case, the mode for delay 
in seeking treatment was 1 hour, the median was 4 hours, and the mean was 
10.6 hours. If the objective of reporting an average is to present a fair view of the 
data, consider which average (or averages) should be used here. 

MEASURES OF VARIABILITY OR SCATTER 

' ' 

' ' ' 

' ' 

Reporting only an average without an accompanying measure of variability, or dis­
persion, iS a good way to misrepresent a set of data. A common story in statistics 
classes tells of the woman who had her head in an oven and her feet in a bucket of 
ice water. When asked how she felt, the reply was, "On the average, I feel fine." 
Researchers tend to focus on measures of central tendency and neglect how the data 
are scattered, but variability is at least equally important (Tulrnan &Jacobsen, 1989). 
Two datasets can have the same average but very different variabilities (Fig. 2-5). If 
scores in a distribution are similar, they are homogeneous (having low variability); if 
scores are not similar, they are heterogeneous (having high variability). 

The three measures of variability discussed in this text are the standard devia­
tion (SO), range, and interpercentile measures. Unlike averages, which are points 

' ' _, 
,.·,"'"' 

' 

' ' ' ' ' 

Average 

' ' 
' 

' ' ' ' ' '· .. , __ 
AGURE 2-5. Two frequency dis­
tributions with equal averages but 
different variabilities. · 
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I TABLE 2-2 DemonstratiOn of the Calwlatwn of the Sample Standard Devta­
tton fat Length of Stay (m Hou1s) 111 the Hosptt<il fora Sample ofOidet Women 

X 

8 

10 

10 

18 

24 

29 

36 

48 

60 

72 

l:X = 315 

M = 31.5 

X-M (X- M)2 

8 - 31.5 = -23.5 (-23.5)2 = 552.25 

10- 31.5 = -21.5 ( -21.5)' = 462.25 

10- 31.5 = -21.5 ( -21.5)2 = 462.25 

18 - 31.5 = -13.5 ( -13.5)' = 182.25 

24- 31.5 =- 7.5 (- 7.5)' = 56.25 

29- 31.5 = - 2.5 (- 2.5)' = 6.25 

36 - 31.5 = + 4.5 (+ 4.5)' = 20.25 

48 - 31.5 = + 16.5 ( +16.5)2 = 272.25 

60 - 31.5 = + 28.5 ( +28.5)' = 812.25 

72- 31.5 = +40.5 ( +40.5)2 = 1640.25 

l;(X-M)=O l:(X- M)2 = 4466.50 = 

Sum of squares 

Variance = 4466.50/9 = 496.28 square hours 
SD = Square root of 496.3 = 22.28 hours 

representing a central value, measures of variability should be interpreted as dis­
tances on a scale of values. 

Standard Deviation 

This is the most widely used measure of variability. The sample2 SD is defined as: 

SD = square Root of l(X - M)'/n - 1 

The reason for dividing by the quantity (n - 1) involves a theoretical consider­
ation cal~- This concept is discussed later in this text. Briefly, it 
can be shown that using (n -1) produces, for a random sample, an unbia_eed_~~-ti; 
fi!.at~ of_%-p_opulation .varianc~. This consideration assumes more importance with 
small samples. 

Table 2-2 illustrates the calculation of the SD for the list of 10 values for the vari­
/ 

able "length of stay in the hospital" for a sample of older women. The first step is to 
calculate the mean and then subtract it from each value, making sure that the sum 

Drhe SD of a population is represemed symbolically by the lowercase Greek letter sigma (cr). The formula 
differn from the sample SO in that the denominator is simply N, not n - 1. 
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of the deviations is zero. Next, each deviation is squared. The sum of the squared 
deviations (or sum of squares) is then divided by (n - 1). This quantity is called the 
variance. Although it is a measure of variability, the variance is not used as a 
descriptive statistic because it is not in the same unit as the data. For example, the 
variance of the data in Table 2-2 is 496.28 square hours. Most people would have 
difficulty interpreting a "square hour.'' Therefore, the square root is taken to return 
the statistic to its original scale of measurement. The resulting statistic of 22.28 hours 
is the SO. Again, as with the mean, it is clear that every value in the distribution 
enters into the calculation of the SO. It is also clear from the formula that the SO is 
a measure of variability around the mean. The formula in Table 2-2 provides the 
basic understanding of the SO. 

The SO, like the mean, is sensitive to extreme values. For example, in Table 2-2, 
if the value of 72 is changed to 224, the new SO is 35.15 hours, a large inflation from 
the original SO of 22.28 hours. Therefore, the SO serves best for distributions that 
are symmetrical and have a single peak. In general, if it is appropriate to calculate 
the mean, then it is appropriate to calculate the SO. 

The SO has a straightforward interpretation if the distribution is bell-shaped or 
normal (the normal curve is discussed in detail in the next chapter). If the distribu­
tion is perfectly bell-shaped, 68o/o of the values are within 1 SD of the mean, 95o/o 
of the values are within 2 SO of the mean, and more than 99o/o of the data will be 
within 3 SO of the mean. For example, Table 2-3 displays the basic statistics for the 
approximately bell-shaped distribution of a set of denial scores from a sample of 
152 heart attack patients. The mean for the denial scale is 46.5, and the SO is 16.4. 
To determine the range of patients falling :±: 1 SD from the mean, you subtract the 
SO from the mean to determine the lower limit ( 46.5 - 16.4 = 30.1) and add the 
SO to the mean to determine the upper limit (46.5 + 16.4 = 62.9). After rounding 

I TABLE 2-3 Descupt1ve Stat1st1CS Produced b} SPSS far a set of Denwl 
Sco1es From a Sample of 7 52 Heart Attack Pat1ents 

Program 

FREQUENCIES VARIABLES = DENIAIJFORMAT = NOTABLE/STATISTICS = ALL. 

Output 

Mean 46.533 Std err 1.328 Median 

Mode 45.000 SD 16.374 Variance 

Kurtosis ~.249 S E Kurt .391 Skewness 
S ESkew .197 Range 76.000 Minimum 

Maximum 87.000 Sum 7073.000 
Valid cases 152 Missing cases 0 

45.500 

286.092 

.195 
11.000 

Jacobsen, B.S., & Lowery, B.j. 0992). Further analysis of lhe psychometric properties of the Levine 
Denial of Illness Scale. Psychosomatic Medicine, 54, 372-381. 
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Std. Oev- 2.20 

Mean .. 2.4 

N- 430.00 

to whole numbers, 46 of the 152 heart attack patients, or 68% of the sample, had 
denial scores ranging from 30 to 63 and falling within 1 SD of the mean on the 
denial scale. 

Even if the distribution is not perfectly symmetrical, however, this percentage 
holds fairly well. Chebyshev's theorem maintains that even in oddly shaped distri­
butions, at least 75% of the data will fall within 2 SD of the mean (Freund, 1988). 
Figure 2-6 displays a positively skewed distribution, with a mean of 2.4 and an SD 
of 2.2. By actual count, about 87"Al of the values lie within the interval of mean 
±1 SD. Because this distribution is decidedly not bell-shaped, the percentage in this 
interval is different from the expected 68%. Subtracting 2 SD from the mean of 2.4 
leads to the absurd conclusion that some older women had a -2.0 correct identifi­
cation of breast lumps score! 

Because the SD, like the mean, is algebraic, formulas have been developed for 
combining SD from several distributions with different sample sizes to compare 
measures of variability across different samples from different studies. The coefficient 
of variation (CV) is a useful statistic for comparing SD between several investigations 
examining the same variable (Daniel, 1987). This statistic is defined as: 

CV = 100 (SD/X) or 100 (SD/m) 

Because the CV expresses the SD as a percentage of the mean value, it lets 
the researcher compare the variability of different variables (Norusis, 2002). For 
example, Spielberger (1983) reported the following statistics on the State-Trait 
Anxiety Inventory for a sample of depressed patients: mean = 54.43 and SD = 

13.02. For general medical or surgical patients without depression, the statistics 
were: mean = 42.68 and SD = 13.76. The CV for the depressed group was 24%; the 
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CV for the nondepressed group was 32%. Thus, the nondepressed group was more 
variable relative ro their mean than the depressed group. 

The range, the simplest measure of variability, is the difference between the maxi­
mum value of the distribution and the minimum value. In Table 2-2, the range is 
72 - 8 = 64. If the range is reported in a research journal, it would ordinarily be 
given as a maximum and a minimum, without the subtracted value. 

The range can be unstable because it is based on only two values in the distri­
bution and because it tends to increase with sample size. It is sensitive to extreme 
values. For example, in Table 2-2, if the single value of 72 is changed to 224, the 
range would then be 224- 8 = 216, a tremendous increase. 

The main use of the range is for making a quick estimate of variability, but it can 
be informative in certain situations. For example, a health researcher who is con­
sidering subgroup analyses may be interested in knowing the most extreme values 
in a particular variable's distribution. A researcher who intends to report the SD may 
also choose to report the range for the additional information it provides about the 
two endpoints of a distribution. 

lnterpercentile Measures 

A percentile is a score value above which and below which a certain percentage of 
values in a distribution fall (Norusis, 2002). Percentiles are symbolized by the letter 
P, with a subscript indicating the percentage below the score value. Hence, P60 
refers to the 60th percentile and stands for the score below which 60% of values fall. 
The statement "P40 = 55" means that 400/o of the values in the distribution fall below 
the score 55. 

Percentiles allow us to describe a score in relation to other scores in a distribu­
tion. The 25th percentile is called the first quartile; the 50th percentile, the second 
quartile or more commonly the median; and the 75th percentile, the third quartile. 
A score is not said to fall within a quartile, because the quartile is only one point. 
Therefore, the third quartile is not from 50 to 75; it is just the 75th percentile. 

There are several interpercentile measures of variability, the most common 
being the interquartile range (IQR). The IQR is defined as the range of the values 
extending from the 25th percentile to the 75th percentile. To locate the first quartile, 
first locate the median of the distribution. The first quartile is the middle value of all 
the data points below the median; the third quartile is the middle·v;iue ~f all the 
data points above the median. In the previous example, the·s·et. of ordered values 
was 8, 10, 10, 18, 24, 29, 36," 48, 60, 72. The 50th percentile was noted to be 26.5; 
there are five values below 26.5. The median of those five values is 10, and the 
median of the ·five values above the 50th percentile is 48. Thus, the IQR is 48 to 10. 

Other frequently used interpercentile ranges are (P10 to P~ and (P3 to P97). The 
latter interpercentile range identifies the middle 94% of a distribution, a percentage 
similar to that identified in a bell-shaped distribution by the mean :!:2 SD. Table 2-4 i 

i 
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Frequencies 
St4tistics 

A CLUMPS Tot4/ Number of Correct Lumps 

N Valid 430 
Missing 9 

Percentiles 10 .0000 

20 .0000 

30 .0000 

40 1.0000 

so 2.0000 

60 3.0000 

70 3.0000 

80 4.0000 

90 5.0000 

contains a printout of selected computer percentiles for the variable, number of cor­
rect breast lumps identified by a sample of older Black women. 

These interpercentile ranges, like the median, are not sensitiv"e to extreme values. 
If a distribution is badly skewed and the researcher judges that the median (P,;J is the 
appropriate average, then the IQR (or other interpercentile measure) is also appropri­
ate. One of the most common uses of interpercentile measures is for growth charts. 

Comparison of Measures of Variability 

The SD is the most widely reported measure of variability. It has a formula and is the 
most reliable estimate of population variability. Generally, researchers prefer to use 
the SD, unless there is a good reason for not doing so. Like the mean, the most com­
pelling reason for not using the SD is a distribution that has extreme values. The SD 
is best with distributions that are reasonably symmetrical and have only one mode. 

The main uses of the range are to call attention to the two extreme values of a 
distribution and for quick, rough estimates of variability. The range has a serious 
shortcoming as a measure of variability because it is greatly influenced by sample 
size. Because the range is determined by only the smallest and largest values in a 
distribution, other things being equal, the larger the sample, the larger the range 
(Glass & Hopkins, 1996). 
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Interpercentile measures are easy to understand. In a histogram, they mark off 
a certain percentage of area around the median. For example, the IQR, extending 
from P25 to P75 , delineates the middle 500/o of a distribution. These measures have no 
formulas but are calculated by a counting procedure. They can be used with distri­
butions of any shape but are especially useful with very skewed distributions. 

To choose the appropriate measures of variability, the researcher must know 
how a set of scores on a variable is distributed. All of the above measures of vari­
ability are intended for use with interval or ratio variables, and often they are sensi­
ble for ordinal values. There are no measures of variability for nominal data in com­
mon use (Weisberg, 19.92). 

MEASURES OF SKEWNESS OR SYMMETRY 

In addition to central tendency and variability, symmetry is an important character­
istic of a distribution. A normal distribution is symmetrical and bell-shaped, having 
only one mode. When a variable's distribution is asymmetrical, it is skewed. A 
skewed variable is one whose mean is not in the center of the distribution. If there 
is positive skewness, there is a pileup of cases to the left and the right tail of the dis­
tribution is too long. Negative skewness results in a pileup of cases to the right and 
a too-long left tail (Tabachnick & Fidel!, 2001). 

Two sets of data can have the same mean and SD but different skewness (see 
Fig. 2-5). Two measures of symmetry are considered here: Pearson's measure and 
Fisher's measure. Although rarely mentioned in research reports, these statistics are 
very useful in determining the degree of symmetry of a variable's distribution. 
Researchers routinely compute them using statistics produced when running fre­
quency distributions and descriptive statistics on study variables. 

Pearson's Skewness Coefficient 

This measure of skewness is nonalgebraic but is easily calculated and is useful for 
quick estimates of symmetry. It is defined as: 

Skewness = (mean - median)/SD 

For a perfectly symmetrical distribution, the mean will equal the median, and 
the skewness coefficient will be 0. If the distribution is positively skewed, as in 
Fig. 2-1, the mean will be more than the median, and the coefficient will be posi­
tive. If the coefficient is negative, the distribution is negatively skewed, and the 
mean will be less than the median. In general, skewness values will fall between -1 
and + 1 SD units. Values falling outside this range indicate a substantially skewed 
distribution (Hair et al., 1998). Hildebrand (1986) states that skewn_l;,SS values above 
0.2 or below -9.2 indicate severe skewness. ,.-~ 
- For the denial score data of Table 2-3, the skewness~ coefficient is_ ( 46.53. ,-: . 
45.50)/16.37. The resulting value of 0.06 is close to zero. Using Hildebrand's guide­
line, the value of 0.06 indicates minor, not severe, skewness. The reader should 
verify this result visually by means of the chart of the denial score data in Fig. 2-7. 
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Count Midpoint One symbol equals approximately .50 o~~urren~es 

4 12.50 
3 17.50 
7 22.50 
8 27.50 

12 32.50 
18 37.50 
17 42.50 
22 47.50 
19 52.50 
13 57.50 
7 62.50 
5 67.50 
8 72.50 
3 77.50 
5 82.50 
1 87.50 

0 5 10 15 20 
Histogram freque~y 

Valid ~ases 152 Missing ~ases 0 

FIGURE 2-7. Example of a histogram produced by SPSS: Denial scores from a sample of 
152 heart attack patients. (Jacobsen, B., & Lowery, B. [1992]. Further analysis of the psycho­
rnelric dJar.acteristic-s of the Levine Denial of Illness Scale. Psycbosomatic J;fedicine, 54, 
372-381.) 

It is a different story for the negatively skewed data in Fig. 2-£. The SF-36 trans­
formed mental health score mean for that distribution is 79.7, the median is 84.0, and 
the SO is 18.5. Therefore, Pearson's coefficient is (79.7 - 84.0)/18.5, producing a 
value of -0.23, indicating severe negative skewness. 

Fisher's Measure of Skewness 

The formula for Fisher's skewness statistic, found in Hildebrand (1986), is based on 
deviations from the mean to the third power. A symmetrical curve will result in a 
value of 0. If the skewness value is positive, then the curve is skewed to the right, 
and vice versa for a distribution skewed to the left. For the denial score data in 
Table 2-3, Fisher's skewness measure is 0.195. The measure of skewness can be 
interpreted in terms of the normal curve. (This concept is explained further in the 
next chapter.) A z-score is calculated by dividing the measure of skewness by the 
standard error for skewness (0.195/0:197 = 0.99). Values above +1.96 or below 
-1.96 are significant at the 0.05 level because 95% of the scores in a normal distri­
bution fall between + 1.96 and -1.96 SO from the mean. Our value of 0.99 indicates 
that this distribution is not significantly skewed. Because this statistic is based on 
deviations to the third power, it is very sensitive to extreme values. 
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TMH 

N 

Mean 

Median 

Std. Deviation 

Statistics 

Valid 
Missing 

439 

0 
79.7267 

84.0000 
18.50085 

SF-36 Mental Health Score 

Std. Dev - 18.50 

Mean •79.7 

N -439.00 

FIGURE 2-8. Example of a histogram produced by SPSS 12.0 for Windows: SF-36 trans­
formed mental health scores from a sample of 439 older women. (Data from Wood, R. Y. 
{19971. The development and testing of video breast health kits for older women. National 
Cancer Institute Small Business Innovation Research (SBIR) Phase II R43 CA 63935-02.) 

Types of Data Transformations 

Markedly skewed data indicate that the mean is not a good measure of central ten­
dency of scores in the distribution. It is often possible to transform the skewed data 
so that the new scores display normality and equality of variances. Because variables 
differ in the extent to which they deviate from normal, Tabachnick and Fidel! (2001) 
recommend the following: 
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• For moderate skewness, use a square root transformation. 
• For Sl,lbstantial skewness, use a log transformation. 
• For severe skewness, use an inverse transformation. 

Although these authors do not define "moderate," "substantial," and "severe," a prac­
tical approach is to start with a square root transformation and see if that results in 
a more normally distnbuted variable. If not, then proceed to use a log transforma­
tion on the original variable and so on, always checking to see if the transformation 
reduces the skewness problem. If it does, then use the transformed variable in sub­
sequent statistical analyses. 

The direction of the skewness is also considered. For example, when data have 
a positive skewness, one can proceed directly to undertake either a square root or 
logarithmic transformation, which often produces data that are more nearly normal. 
In some cases, the same transformation also achieves equality of variances (Maxwell 
& Delaney, 1990; Tabachnick & Fidell, 2001). With negative skewness, however, an 
additional step is required, that of "reflecting" the variable to make the negative 
skewness a positive skewness. This means that the variable is reverse-scored. For 
example, with moderate or severe negative skewness, the following procedure 
needs to be done: 

1. "Reflect" the variable by finding the largest score in the distribution, and add 
one to it to form a constant that is larger than any other score in the 
distribution. 

2. Form a new variable by subtracting each person's score from the constant. 
Thus, the negative skewness is converted to a positive skewness before trans­
formation. At this stage, the resulting variable, because it was derived from a 
"reflected" variable, means just the opposite of what it meant before reflection. 
Thus, if high scores on a self-esteem total score mean high self-esteem, they 
now mean low self-esteem after reflection. 

3. Then apply the appropriate transformation to the newly formed variable. 
4. Check the skewness for the transformed variable; if close to zero, then use the 

transformed variable in subsequent analyses. 

If you then use the transformed variable in subsequent analyses, remember 
that its meaning has been reversed so that a high score now means just the 
opposite of what it meant before reflecting the variable and transforming it. In 
order to change the transformed variable back to its original meaning, it is often 
useful to perform another reflection on the transformed variable. This can be 
accomplished by finding the largest score in the transformed variable's distribu­
tion, add one to it to form a constant that is larger than any other score in the 
distribution, and form a new variable by subtracting each person's score from 
the constant. The resulting variable now is interpreted exactly as it was inter­
preted prior to the first reflection (#s 1 and 2 in the earlier list). If high numbers 
meant more of that characteristic (ie, self-esteem) before the first reflection, then 
high numbers again mean more of that characteristic (ie, high self-esteem) after 
the second reflection. 

As a rule, it is best to transform significantly skewed variables to normality 
unless the transformed scores make interpretation impractical (Tabachnick & Fidell, 
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2001). Once transformed, always check that the transformed variable is normally or 
nearly normally distributed. If one type of transformation does not work, try another 
until you achieve a transformation that produces variables with skewness close to 
zero and/or the fewest outliers. Finally, if transforming the variable does not work, 
the best thing might be to create a categorical variable. 

There are potential disadvantages to transforming data. Chief among them is 
that transformed variables may be harder to interpret. Whether or not to transform 
depends on the scale that measures the variable. If the scale is widely known and 
used, transformations often hinder interpretation. If the scale is not well known, 
transformations often do not particularly increase the difficulty of interpretation 
(Tabachnick & Fidell, 2001). Most computer programs permit various types of trans­
formations through the use of the Compute command. 

Hair et al. (1998) recommend keeping several guidelines in mind when carrying 
out data transformations: 

1. For a transformation to have a noticeable effect, the ratio of the variable's mean 
to its SO should be less than 4.0. 

2. When the transformation can be done on either of two variables, transform the 
variable with the smallest ratio from guideline #1. 

3. Transformations should be applied to the independent variable except when 
heteroscedasticity, or the failure of the assumption of homoscedasticity, is pres­
ent. (Homoscedasticity is the assumption that the dependent variable displays 
equal levels of variance across the range of predictor variables.) 

4. Heteroscedasticity can be corrected only by transforming the dependent 
variable in a dependence relationship. If a heteroscedastic relationship is also 
nonlinear, the dependent variables and possibly the independent variables must 
also be transformed. 

5. Transformations may change how you interpret the variable's score. Thus, 
you should carefully explore the possible interpretations of the transformed 
variables. 

MEASURES OF KURTOSIS OR PEAKEDNESS 

Fisher's Measure of Kurtosis 

This statistic, indicating whether a distribution has the right bell shape for a normal 
curve, measures whether the bell shape is too flat or too peaked. Fisher's measure, 
based on deviations from the mean to the fourth power, can also be found in 
Hildebrand (1986). However, the calculation is tedious and is ordinarily done by a 
computer program. A curve with the correct bell shape will result in a value of zero. 
If the kurtosis value is a large positive number, the distribution is too peaked to be 
normal (leptokurtic). If the kurtosis value is negative, the curve is too flat to be nor­
mal (platykurtic). For the denial score data in Table 2-3,-the kurtosis statistic is given 
as -0.249, a value close to zero, indicating that the shape of the bell for this distri­
bution can be called normal. Dividing this value by the standard error for kurtosis 

I 
I 
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( -0.249/0.391 = -0.64), our distribution is not significantly kurtosed; that is, the 
value is not beyond :!: 1.96 SO. Because this statistic is based on deviations to tbe 
fourth power, it is very sensitive to extreme values. If a distribution is markedly 
skewed, there is no particular need to examine kurtosis because the distribution is 
not normal. 

ROUNDING DESCRIPTIVE STATISTICS FOR TABLES 

When reporting descriptive statistics in a table, too many digits are confusing. Even 
tbough a computer program has provided tbe statistic to the fourth decimal place, 
not all the digits need to be reported. If diastolic blood pressure is measured to the 
nearest whole number, why report descriptive statistics for blood pressure to the 
nearest 10,000th? 

In rounding to the nearest 10tb (or 100tb), if the last digit to be dropped is less 
than 5, round to the lower number; if it is higher than 5, round to the higher number. 
If tbe last digit to be dropped is exactly 5, no change is made in the preceding digit 
if it is even, but if it is odd, it is increased by 1. Thus, 4.25 to tbe nearest 10tb is 4.2, 
but 4.35 becomes 4.4. 

CHARTS USING DESCRIPTIVE STATISTICS 

Line Charts 

In healtb care research, tbe line chart is frequently used to display longitudinal 
trends. Time points in equal intervals are placed on the horizontal axis and tbe scale 
for the statistic on tbe vertical axis. Dots representing the statistic (eg, means, medi­
ans, or percentages) at each time point are then connected. The line chart presents 
a smoother appearance than drawing bars over each time point. Frequently, vertical 
error bars are added to each time point to indicate the accuracy of the statistic as an 
estimate of a population parameter. These error bars represent standard errors, 
which are discussed in detail in Chapter 3. Examples of several types of line charts 
from research journals are given in Figs. 2-9 through 2-11. When several groups are 
being compared in tbe same line chart, Tufte (1983) recommends tbat labels be inte­
grated into tbe chart rather than having a separate legend, so tbe eye is not required 

. to go back and forth. 
The issue of whether to place a zero on the vertical axis of a time series line 

chart is determined by tbe purpose of the chart and the target group for whom it 
was designed. Different authors of books on charting have differing views on this 
subject. Cleveland (1985) and Tufte (1983) botb maintain that the vertical axis 
should start immediately. below the lowest value in the dataset. It is best to choose 
the scale for tbe vertical axis so tbat tbe data fill up the chart. You may assume tbat 
the reader of a scientific journal will look at tick mark labels and breaks in the axes 
or line plot and understand them (Cleveland, 1985). 
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I-+-USA ---UK 

120 

Year indexed in INI 

FIGURE 2-9. Comparison of numbers of articles published on patient advocacy in the 
USA and the UK (1876-1995). (From Mallik, M., & Rafferty, A. [2000]. Diffusion of the 
concept of patient advocacy. journal of Nursing Scholarship, 32( 4), 402.) 

A box plot, also called a box-and-wbiskers plot, is a graphic display that uses descrip­
tive statistics based on percentiles (Tukey, 1977). It simultaneously displays the 
median, the IQR, and the smallest and largest values for a group (Norusis, 2002). 
Although more compact than a histogram, it does not provide as much detail. 

The first step in constructing the box plot is to draw the box. Its length corre­
sponds to the IQR; that is, the box begins with the 25th percentile and ends with the 
75th percentile (Fig. 2-12). A line (or other symbol) within the box indicates the 
location of the median or 50th percentile. Thus, the box provides information about 
the central tendency and the variability of the middle 50% of the distribution. 

The nexi step is to locate the wild values of the distribution, if any. Calculate the 
IQR (P75 - P2.j), and then multiply this value by 3. Individual scores that are more 
than three times the IQR from the upper and lower edges of the box are extreme 
outlying values and are denoted on the plot by a symbol such as E. Nexl, multiply 
the IQR by 1.5. Individual scores between 1.5 times the IQR and 3 times the IQR 
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FIGURE 2-10. Total emergency department (ED) visits and HCA (health care access) 
appointments by year, before and after state funding. (From Smith-Campbell, B. [2000]. 
Access to health care: Effects of public funding on the uninsured. journal of Nursing 
Scholarship, 32(3), 298.) 

away from the edges of the box are minor outlying values. They are denoted on the 
box plot with a different symbol, such as 0. Finally, draw the whiskers of the box. 
These lines should extend to the smallest and largest values that are not minor or 
extreme outlying values. Thus, the whiskers and designation of the outlying values 
provide more detail about how the lower 25% and upper 25% of the distribution are 
scattered. 

The box plot is particularly well suited for comparisons among several groups. 
Examples of box plots are given in Fig. 2-13, comparing psychological adjustment to 
illness in a sample of breast cancer patients according to stage of cancer. As the 
stage of cancer became higher, adjustment worsened (ie, the average score 
increased). Also, it is dear that the variability of the adjustment scores was greater 
as the stage became higher. The subject identification numbers can be placed on the 
plot for convenient reference. 
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AGURE 2·11. Trends in survival in the 3 years after hospitalization for defi­
nite acute myocardia) infarction in 1985 and 1990 among residents of the 
Twin Cities area who were 30 to 74 years of age. (From McGovern, P. G., 
Pankow,]. S., Shahar, E., Doliszny, K. M., Folsom, A. R., Blackburn, H., & 
Leupker, R. V. [19961 Recent trends in acute coronary heart disease. New 
Eng/and journal of Medicine, 34(14), 887. © 1996, Massachusetts Medical 
Society. All rights reserved.) 

Outliers are values that are extreme relative to the bulk of scores in the distribution. 
They appear to be inconsistent with the rest of the data. Outliers must be appraised 
by the types of information they provide. In some cases, outliers, despite being dif­
ferent from most of the sample, may be beneficial: They may indicate characteristics 
of the population that would not be known in the normal course of analysis. In 
other cases, outliers may be problematic because they do not represent the popula­
tion, run counter to the objectives of the analysis, and can seriously distort statistical 
tests (Hair et al., 1998). Thus, it is important to detect outliers to ascertain their type 
of influence. 

The source of an outlier may be any of the following: 

1. An error in the recording of the data 
2. A failure of data collection, such as not following sample criteria (eg, inadver­

tently admitting a disoriented patient into a study), a subject not following 
instructions on a questionnaire, or equipment failure 

3. An actual extreme value from an unusual subject 

t 
' f 

l 



CHAPTER 2 Univariate Descriptive Statistics 55 

E ~-----~ Extreme outlier 

:~ Minoroutliers 

-r.,.""t------ Largest value that 
is not an outlier 

r-...L.--, ... 4----- 75th percentile 

~-.. 4----- 50th percentile (median) 

'---,---'• .. .------ 25th percentile 

_ ~~------ Smallest value that is 
not an outlier 

AGURE 2-12. Schematic diagram of the 
construction of a box plot. 

Outliers must first be identified by an objective method. A traditional way of 
labeling outliers has been to locate any values that are more than 3 SO from the 
mean. The problem with this method is that outliers inflate the SO, making it less 
likely that a value will be 3 SO away from the mean. Tukey's (1977) recommenda­
tion was described earlier: in connection with the box plot. Values that are more than 
3 IQRs from the upper or lower edges of the box are extreme outliers. Values 
between 1.5 and 3 IQRs from the upper and lower edges of the box are minor out­
liers. The reason for having an objective method is to prevent undue (perhaps 
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FIGURE 2-13. Box plots of psy­
chological adjustment to illness 
(PAIS) in a sample of breast can­
cer patients by stage of cancer 
(hypothetical data). Higher scores 
indicate poorer adjustment. 

unethical) data manipulation, such as pruning very high or very low values that are 
not really outliers. 

Outliers in a dataset can be identified from univariate, bivariate, and multi­
variate perspectives. In data analysis, it is best to use as many of these perspec­
tives as possible. Although in-depth discussion of the various approaches is 
beyond the scope of this chapter, Hair et al. (1998) and Tabachnick and Fidel! 
(2001) provide excellent discussions on detecting and handling outliers in various 
circumstances. 

Once outliers have been identified, the next step is to try to explain them. If 
they represent errors in coding or a failure in the data collection, then those obser­
vations are either discarded or corrected. If the outliers represent actual values or 
their occurrence in the distribution cannot be explained, the researcher must decide 
how to deal with them. 

Handling Outliers 

A frequent suggestion for handling outliers is to analyze the data two ways: with the 
outliers in the distribution and with the outliers removed. If the results are similar, as 
they are likely to be if the sample size is large, then the outliers may be ignored. If 
the results are not similar, then a statistical analysis that is resistant to outliers can be 
used (eg, median and IQR). 
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If the researcher wants to use a mean with outliers, then the trimmed mean is an 
option. 1his statistic is calculated with a certain percentage of the extreme values 
removed from both ends of the distribution. For example, if the sample size is 100, then 
the 5% trimmed mean is the mean of the middle 90"Al of the observations. Formulas for 
using the trimmed mean in statistical inference are given by Koopmans (1987). 

Another alternative is a winsorized mean. In the simplest case, the highest and 
lowest extremes are replaced, respectively, by the next-to-highest value and by the 
next-to-lowest value. If the sample size is 100, the resulting 100 data points are then 
processed as if they were the original data. Winer (1971) outlines the· techniques for 
handling statistics computed from winsorized samples. 

For univariate outliers, Tabachnick and Fidell (2001) suggest changing the 
score(s) on the variable(s) for the outlying cases so they are deviant, but not as 
deviant as they originally were. For example, give the outlying case(s) a raw score 
on the specific variable that is one unit srnaller (or larger) than the next most 
extreme score in the distribution. Thus, if the two largest scores in the distribution 
are 125 and 122, and the next largest score is 87, recode 122 as 88 and 125 as 89. 
This moves these outliers closer to the bulk of scores in the distribution. Sometimes, 
this conversion is all it takes to handle the problem of severe skewness in a distri­
bution, discussed in Chapter 3. 

The actual score a case has is somewhat arbitracy. What is important is that the 
case still retains its place in the distribution: If the case has the lowest score, it will 
still have the lowest score after being assigned a number closer to the bulk of scores 
in the distribution. Any changes in scores should be noted, along with the rationale, 
in the results section of the research report. 

Further details on the treatment of outliers can be found in Mertler and Vannatta 
(2002), Tabachnick and Fidell (2001), and Hair et a!. (1998). A researcher can also 
view these actual outliers as case material and adopt the advice of Skinner (1972), 
who advocates that when you encounter something interesting, study it. 

MISSING DATA 

One of the most pervasive problems in data analysis is what to do about missing 
data. Most studies have missing information for some variables for some cases. Miss­
ing data can occur at the subject and/or item level (Kneipp & Mcintosh, 2001). Miss­
ing data at the subject level are usually found in longitudinal and repeated measures 
studies when one or more subjects are lost to follow-up or decide not to continue 
participation in the study. Missing data at the item level are quite common when one 
or more items on a survey or questionnaire are not answered by a respondent. Miss­
ing data are a problem because all standard statistical techniques presume that each 
case in a dataset has information on all the variables to be included in the particu­
lar analysis (Allison, 2001). 

With missing data, the researcher faces three major tasks: to identify the pattern 
and amount of missing data, to assess why it is missing, and to determine what to 
do about it. 
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Pattern and Amount of Missing Data 

There are two characteristic patterns of missing data: random and systematic. A ran­
dom pattern consists of values missing i'n an unplanned or haphazard fashion 
throughout a dataset. A systematic pattern consists of values missing in a methodi­
cal, nonrandom way throughout the data. The pattern of missing data is more 
important than the amount of missing data (Tabachnick & Fidel!, 2001). If only a few 
data values are absent in a random pattern from a large dataset, almost any proce­
dure for handling missing values can be used. However, if many data are missing 
from a small or moderately sized dataset, serious problems can ensue unless the 
researcher takes steps to handle the problem. Missing data is such a serious prob­
lem in a dataset that all statistical packages have conventions for coding missing data 
for further study and for special treatment in statistical procedures. For example, 
SPSS has a "System Missing" category that shows up in the ruita spreadsheet and on 
the computer printout as a period. 

Random missing data can be one of three categories (Allison, 2001; Little & 
Rubin, 1987): missing completely at random (MCAR), missing at random (MAR), and 
not missing at random (NMAR). MCAR data have the highest degree of randomness, 
displaying no underlying reason that would contribute to biased data (Musil et at., 
2002). MCAR data are randomly distributed across all cases and are completely unre­
lated to other variables in the dataset (Hair et at., 1998). In contrast, MAR data dis­
play some randomness to the paltern of omission that can be traced or predicted 
from cases with no missing data. In other words, MAR occurs when the probability 
of a missing value is not dependent on the value itself but may rely on the values of 
other variables in the dataset (Allison, 2001). The third type of missing data, NMAR, 
occurs when the missing·values are systematically different from those observed, 
even among respondents with other similar characteristics (Kneipp & Mcintosh, 
2001). Systematic missing data, even in a few cases, should always be treated seri­
ously because they affect the generalizability of results. 

If you are not sure whether the missing data are random or systematic, you can 
rest for palterns with the following procedure. First, create a grouping variable with 
two levels (using the Recode, or comparable, command in your computer program), 
making 1 = cases with missing values on the variable and 0 = cases with no miss­
ing values on the variable. Then, perform a test of differences, such as the t test, 
between the two levels on the dependent variable(s). If there are no meaningful 
differences, how you handle the missing data is not so important. If serious differ­
ences are noted, then handling missing data is critical and care should be taken to 
preserve the missing cases for further analyses (Tabachnick & Fidel!, 2001). A useful 
program for examining missing data is SPSS Missing Values Analysis, which permits 
you to analyze palterns of missing data and to replace them in the dataset using one 
of several methods. 

Assessing Why Data Are Missing 

It is important to understand what, if any, factors led up to missing data in a research 
study, because the researcher needs to grasp what may have happened to handle 
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the problem. Hair et al. (1998) define a missing data process as "any systematic 
event external to the respondent (such as data entry errors or data collection 
problems) or action on the part of the respondent (sucb as refusal to answer) that 
leads to missing data" (p. 46). If the missing data process is under the researcher's 
control and can be explicitly defined, these missing data can be ignored and no spe­
cific remedies are needed because allowances have been made for missing data in 
the technique used CAllison, 2001; Uttle & Rubin, 1987). 

An example of ignorable missing data inherent in the technique uSed is the 
application of probability sampling to select respondents for a study. This sampling 
method permits the researcher to stipulate that the missing data process leading to 
the missing data points is random and that the missing data are explained as sam­
pling error in the statistical procedures (Hair et al., 1998). 

More often than not, however, the researcher has no idea why specific data 
are missing. Thus, examining the pattern of missing data becomes important. Aie 
the respondents with missing data on some variables different than the respon­
dents who provided information on these variables? Only by understanding to the 
greatest extent possible why missing data occurred can the researcher take appro­
priate steps to handle the impact that it can have on the analyses, the results, and 
the subsequent interpretation of the data. 

Handling Missing Data 

Missing data can be handled in several ways: Using complete-case (listwise deletion) 
and available-case (pairwise deletion) analysis (Kneipp & Mcintosh, 2001); deleting 
cases or variables (Tabachnick & Fidell, 2001); weighting techniques (Patrician, 
2002); and estimating missing data through imputation (Tabachnick & Fidell, 2001). 

USING OBSERVATIONS: COMPLETE-CASE 
AND AVAILABLE-CASE ANALYSIS 

The easiest and most direct method for dealing with missing data values is to ana­
lyze only those cases with complete data. This procedure, called listwise deletion, is 
the default procedure in most major statistical programs such as SPSS, SAS, BMDP, 
and Systat. As such, numerous cases can be deleted without the researcher's 
knowledge, resulting in a substantial loss of subjects. Thus, it is important to check 
the number of cases when running statistical analyses to ensure that all desired cases 
are used. Hair et al. (1998) suggest using this method if the amount of missing data 
is small, the sample is sufficiently large to permit deletion of cases with missing data, 
and the relationships in the data are so strong that they will not be influenced by 
any missing data process. With MCAR data, listwise deletion produces unbiased 
parameter estimates but larger standard errors due to the decrease in sample size 
and can lead to misleading results and decreased analytic power especially if a large 
number of cases is removed (Patrician, 2002). 

Available-case analysis using only those cases that have available data on the 
variables for a specific analysis is a common research practice. This can be accom­
plished using pairwise deletion of cases with missing data, commonly available as an 
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option in most statistical packages. This method permits cases to be deleted only if 
the variables being used in the analysis have missing data. Both listwise and pair­
wise deletion procedures are ad hoc in na~re, have no theoretical justification, and 
are designed solely to provide complete data for specific analyses. Pairwise deletion 
is often used for correlations, factor analysis, and linear regression (Allison, 2001). 

DELETING CASES OR VARIABLES 

Dropping the case or variable is another remedy for handling missing data. The 
researcher simply determines the extent of missing data on each case and variable 
in the dataset, then removes the cases or variables with excessive levels. Although 
there are no hard-and-fast rules for determining excessive levels of missing data, 
many researchers use a predetermined percentage of missing data as a cutoff for 
deciding whether to exclude a variable from analysis. It is not unusual to see a 5% 
or HJ0A> cutoff being used. Usually, this planned cutoff level is based on theoretical 
and empirical reasons. In many situations, given a large enough sample, this is the 
most efficient solution. Once cases or variables with missing data are removed, the 
researcher may discover that the missing data were localized in a small set of cases 
or variables. Once excluded, the extent of missing data is considerably decreased 
(Hair et al., 1998). 

WEIGHTING TECHNIQUES 

Another, less common, way to handle missing data is to disregard missing values 
and assign a weight to cases with complete data. Little and Rubin (1987) believe that 
weighting those cases with no missing data higher than those with missing data 
decreases the bias from case-deletion methods as well as the sample variance, but 
makes calculating standard errors more difficult. 

ESTIMATING MISSING DATA BY IMPUTATION 

Imputation is the process of estimating missing data based on valid values of other 
variables or cases in the sample. The goal of imputation is to use known relation­
ships that can be identified in the valid values of the sample to help estimate the 
missing data (Hair et al., 1998). Tabaclmick and Fidell (2001) discuss five popular 
ways to estimate missing data: using prior knowledge, inserting mean values, using 
regression, expectation maximization (EM)~ and multiple imputation. 

Prior knowledge involves replacing a missing value with a value based on 
an educated guess. This is a reasonable method if the researcher has a 
good working knowledge of the research domain, the sample is large, and 
the number of missing values is small. In such circumstances, the researcher 
is confident that the missing value would have been near the median, or 
other, value. 

Mean replacement (or median replacement for skewed distributions) 
involves calculating mean values from available data on that variable and 
using them to replace missing values before analysis. This is a conservative l 
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procedure because the distribution mean as a whole does not change and 
the researcher does not have to guess at missing values. Hair et al. (1998) 
cite three disadvantages to this approach: It invalidates the variance esti­
mates derived from the standard variance formulas by understating the 
data's true variance; it distorts the actual distribution of values; and it 
depresses the observed correlation that this variable will have with other 
variables because all missing data have a single constant value, thus reduc­
ing variance. 

Mean substirution, however, has the advantage of being easily imple­
mented and provides all cases with complete data. A compromise proce­
dure is to insert a group mean for the missing value. If, for example, the 
case with a missing value is a female patient with hypertension, the mean 
value for female patients with hypertension is computed and inserted in 
place of the missing value. This procedure is less conservative than insert­
ing the overall mean value but not as liberal as using prior knowledge 
(Tabachnick & Fidell, 2001). 

Using regression, a more sophisticated method for estimating missing val­
ues, involves using other variables in the dataset as independent variables 
to develop a regression equation for the variable with missing data serving 
as the dependent variable. Cases with complete data are used to generate 
the regression equation; the equation is then used to predict missing val­
ues for incomplete cases. More regressions are computed, using the pre­
dicted values from the previous regression to develop the next equation, 
until the predicted values from one step to the next are comparable. Pre­
dictions from the last regression are the ones used to replace missing 
values. 

Hair et al. (1998) cite four disadvantages to using the regression 
approach: It reinforces the relationships already in the data, resulting in less 
generalizability; the variance of the distribution is reduced because the esti­
mate is probably too close to the mean; it assumes that the variable with 
missing data is correlated substantially with the other variables in the 
dataset; and the regression procedure is not constrained in the estimates it 
makes. Thus, the predicted values may not fall in the valid ranges for vari­
ables-for instance, a value of 6 may be predicted for a 5-point scale. The 
main advantage of the regression approach is that it is more objective than 
the researcher's guess but not as blind as simply using the overall mean 
(Tabachnick & Fidell, 2001). 

Expectation maximization (EM) method, available for randomly missing data, 
is an iterative process that proceeds in two discrete steps. First, in the Expec­
tation (E) step, the conditional expected value of the complete data is com· 
puted and then given the observed values, such as correlations. Second, in 
the maximization (M) step, these expected values are then substiruted for the 
missing data and inaximum likelihood estimation is then computed as though 
there were no missing data. The procedure iterates until convergence is 
reached and the filled-in data are saved in the dataset. SPSS Missing Values 
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Analysis performs EM to produce imputed values and allows some specifica­
tions of other nonnormal distributions (Tabachnick & Fidel!, 2001). 

Multiple imputation (MI), similar to maximum likelihood estimation, pro­
duces several datasets and analyzes them separately. One set of parameters 
is then formed by averaging the resulting estimates and s1andard errors. The 
number of datasets to impute derives from the extent of missing data in the 
dataset, although most statisticians recommend 3 to 5 sets (Patrician, 2002). 
For an excellent discussion of the various types of multiple imputation, the 
reader is referred to Allison (2001) and Little and Rubin (2002). 

Multiple imputation has a number of advantages: 

• It makes no assumptions about whether data are randomly missing 
(Tabachnick & Fidell, 2001) but incorporates random error because it 
requires random variation in the imputation process (Patrician, 2002); 

• It permits use of complete-data methods for data analysis and also includes 
the data collector's knowledge (Patrician, 2002); 

. • It permits estimates of nonlinear models (Allison, 2001); 
• It simulates proper inference from data and increases efficiency of the 

estimates (Patrician, 2002) by minimizing standard errors (Rubin, 1987); 
and 

• It is the method of choice for databases that are made available for analyses 
outside the agency that collected the data (Tabachnick & Fidel!, 2001). 

MI has the following major disadvantages: 

• It requires computational intensiveness to carry out Ml, including special 
software and model building (Kneipp & Mcintosh, 2001), although this has 
become less so in recent years due to technological advances; 

• It does not produce a unique answer because randomness is preserved 
in the Ml process, making reproducibility of exact results problematic 
(Patrician, 2002); and 

• It requires large amounts of data storage space that often exceeds space on 
personal computers' hard drives or the amounts allotted on university­
shared drives, especially when national datasets with thousands of respon­
dents are used (Kneipp & Mcintosh, 2001). 

When using imputation methods, Tabachnick and Fidel! (2001) recommend 
repeating analyses with and without missing data to make sure that the results do 
not get distorted by imputed values. This can be particularly problematic if the 
dataset is small. 

' 

Descriptive statistics based on the mean are best for. distributions that are rea­
sonably symmetrical and have a single peak. These measures include the mean, 
the SD, Pearson's skewness coefficient, and Fisher's measures of skewness and 

l 



CHAPTER 2 Univariate Descriptive Statistics 63 

kurtosis. For skewed distributions, the median and the IQR are less influenced by 
extreme scores. The range, the mode, Pearson's coefficient of skewness, and 
Fisher's measure of skewness are quick estimates. In addition, the mode is 
informative when a distribution has several peaks. The range is useful for locat­
ing the most extreme values. Outliers are extreme values that meet objective cri­
teria, and researchers must consider carefully how to handle them in data analy­
sis. Two charts that make use of summa.ry statistics are the line chart and the box 
plot. A line chart uses statistics such as means at various time points to portray 
longitudinal trends. Box plots emphasize extreme values in a distribution and are 
handy for displaying outliers. Missing data are a fact of life in data analysis. The 
researcher must determine the pattern and amount of missing data, why it 
occurred, and what method is best for handling it. No one technique can solve all 
problems with missing data. 

ApplicatiomExercises and Results· 

Exercises 

1. Access the dataset named SURVEY03.SAV. Run frequencies and include statistics for all 
variables. Examine the output for outliers, marked skewness, unequal groups, and missing 
data. Decide what to do about the problems you encounter. 

2. Construct a table that includes some of the categorical variables in this dataset. Write a 
description of the table. 

3. Construct a table that includes some of the continuous variables in this dataset. Write a 
description of the table. 

4. Construct a box plot (sometimes called a box-and-whiskers plot) for the variable EDUC by 
GENDER. 

Results 

1. Generally, when you first look at output, you will find invalid numbers--that is, a number 
that is not valid for a particular variable. With SURVEY03.SAV, we tried to remove all 
invalid numbers, so unless we missed one, you should not have found any. 

For an example of an outlier, find the frequencies for the variable AGE in the printout 
and examine them. You should see one 78-year-old, one 79-year-old, two 82-year-olds, 
one 83-year-old, and one 95-year-uld. The next largest age is 74 years. We questioned 
whether the 95-year-old was a data entry error but were assured by the student who col­
lected the data that the individual was indeed 95 years old. These five data points could be 
viewed as outliers because they are several units away from the next highest age score of 
74 years. If we follow Tabachnick and Fidell's (2001) suggestion for univariate outliers, we 
would change the scores of the five outliers in the AGE variable to bring them closer to the 
bulk of the distribution's scores. In all versions of SPSS for Windows, we accomplish this 
by clicking on the Transform, Recode, and Into Different Variables menus. In this last win­
dow, highlight the AGE variable in the variable column and paste it in the Numeric Vari­
able box. Give the output variable a new name such as RECAGE, then click Change. This 
will move the new variable name into the Numeric Variable window following the arrow. 
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Click on Old and New Values and specify how to recode the values. Under Old Value, type 
the number 78 in the Value box. Under New Value, type che number 74 in the Value box. 
Click Add to paste the conversion into the Old ---7 New window. Repeat this procedure for 
the additional four values (79, 82, 83, and 95, making them 75, 76, 77, and 78, respec­
tively). Then, in the Old Value column, click on All Other Values at the bottom, then click 
on the Copy All Value(s) in the New Value column and hit the Add button. (If you do nor 
Copy All Values, your resulting variable will have only six cases because all of the other 
values were not moved to the new variable, RECAGE.) When you have completed these 
operations, you should have five value statements in the Old S New window. To complete 
the Recede procedure, click Continue, then OK. The transformation will then take place 
and the new variable RECAGE will appear as the last variable in the data file window. 
Next, return to the spreadsheet and switch to the Variable View. Scroll down the variable 
list to the last variable, RECAGE. Now, move horizontally to the column named Value and 
type in the following' Recoded Age Variable Making 78, 79, 82, 83, 95 into 74, 75, 76, 77, 
and 78. Finally, to make sure you do not lose this newly created variable when you exit 
the program, save the data file at this time. 

Exercise Fig. 2-1 contains the descriptive statistics for several variables in the dataset. 
The receded AGE variable (RECAGE) resulted in small changes in the mean, standard error 
of the mean, SD, variance, range, and minimum and maximum values. Skewness was 
reduced from 0.753 to 0.643; kurtosis was greatly changed from 0.796 to 0.287. 

Skewness is often a problem in data analysis and violates the assumptions underlying 
parametric tests. Look at the variable HEALTH (overall state of health). It was scored from 
1 =Very Sick to 10 =Very Healthy. Only 12.9"/o of the distribution falls between the scores 
of 1 and 5. Only one respondent had a rating of 1; no respondents rated themselves as 2. 
This is understandable because students are not likely to request data from people who are 
very ill. You can tell by looking at the distribution that it is negatively skewed (ie, the val­
ues tail off at the lower end). The value for skewness ( -0.961) divided by the standard 
error of skewness (0.092) yields -10.44, indicating significant skewness beyond the 0.01 
level (critical value = 2.58 SD from the mean). You might try to transform this variable and 
see if you can create a normally distributed variable. Remember, it is negatively skewed 
and would require .. reflecting" before being transformed. 

There are a number of examples of unequal groups in the dataset, SURVEY03.SAV. 
Males make up only 36.6% of the sample. Only 11.3% of the sample still smokes, and only 
1.6% are routinely depressed. What other examples of unequal groups can you find? 

Although there are quite a lot of missing data across the dataset, no variable has more 
than 5% missing data. This indicates a random rather than a systematic pattern of missing 
data. If you examine the frequency distributions, you will note that EDUC has 28 ( 4.00-b) 
missing data points and SMOKE (Smoking History) has 4 (0.6%) missing data points. Are 
there any other variables with similar amounts of missing data? 

We now need to determine what method we should use to handle the missing data 
problem. If we choose the most conservative method and use only the cases with no miss­
ing data, we might end up with just a few cases in our dataset. This is because there are 
missing data in 44 (86.3%) of the 51 variables in our dataset. So, we now consider the next 
most conservative approach for handling missing data: dropping the case or the variable 
with excessive levels of missing data. If we examine the frequencies for the variables in the 
dataset, we see that TOTAL, the total score for the IPPA scale, has missing data for 40 
(5.7%) of cases. Why is this so high when the items that were summed to compute the total 1' 

(text continues on page 69) 
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AGE subject's 

age 

684 
17 

38.06 

.496 

37.00 

28 

12.972 

168.266 

.753 

.093 

.796 

.796 
80 

15 

95 

700 

1 

7.85 

.o66 
8.00 

9 
1.740 

3.027 

-.961 

.092 

.555 

.185 

9 
1 

10 

RECAGE 

Recorded 

Age 

(78,79,82 

83,95 into 

75,76,77, 

78,79) 

684 

17 

38.0073 

.48884 

37.0000 

28.00 

12.78479 

163.45090 

.643 

.093 

.287 

.287 

64.00 

15.00 

79.00 

EXERCISE AGURE 2-1. Descriptive statistics for study variables. 
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HEALTH overall state of health 

Cumulative 

Frequency Percent Valid Percent Perc em 

Valid I Very Sick I .I .I .I 

3 17 2.4 2.4 2.6 

4 21 3.0 3.0 5.6 

5 51 7.3 7.3 12.9 

6 31 4.4 4.4 17.3 

7 117 !6.7 !6.7 34.0 

8 170 24.3 24.3 58.3 

9 182 26.0 26.0 84.3 

10 Very Healthy 110 15.7 15.7 100.0 

Total 700 99.9 100.0 

Missing System I .I 

Total 701 100.0 

Frequency Table 
GENDER gender 

Cumulative 

Frequency Percent Valid Percent Percent 

Valid 0 male 255 36.4 366 36.6 

1 female 441 62.9 63.4 100.0 

Total 696 99.3 100.0 

Missing System 5 .7 

Total 701 100.0 

SMOKE Smoking History 

Cumulative 

Frequency Percent Valid Percent Percent 

Valid 0 Never Smoked 433 61.8 62.1 62.1 

1 Quit Smoking 185 26.4 26.5 88.7 

2 Still Smoking 79 11.3 11.3 100.0 
Total 697 99.4 100.0 

Missing System 4 .6 
Total 701 100.0 

EXERCISE AGURE 2-1. (Continued). 



DEPRESS depressed state of mind 

Cumulative 
Frequency Percent Valid Percent Percent 

Valid 1 Rarely 361 51.5 51.6 51.6 
2 Sometimes 280 39.9 40.0 91.6 
3 Often 48 6.8 6.9 98.4 
4. Routinely 11 1.6 1.6 100.0 
Total 700 99.9 100.0 

Missing System 1 .1 
Total 701 100.0 

Frequency Table 

EDUC education in years 

Cumulative 

Frequency Percent Valid Percent Percent 
Valid 7 1 .1 .I .I 

8 12 1.7 1.8 1.9 
9 2 .3 .3 2.2 
10 6 .9 .9 3.1 
11 5 .7 .7 3.9 
12 70 10.0 10.4 14.3 
13 25 3.6 3.7 18.0 
14 3 .4 .4 18.4 
14 63 9.0 9.4 27.8 
15 28 4.0 4.2 31.9 
16 147 21.0 21.8 53.8 
17 40 5.7 5.9 59.7 
18 1 .1 .I 59.9 
18 84 12.0 12.5 72.4 
19 46 6.6 6.8 79.2 
20 1 .1 .I 79.3 
20 65 9.3 9.7 89.0 
21 27 3.9 4.0 93.0 
22 21 3.0 3.1 96.1 
23 7 1.0 1.0 97.2 
24 I .I .I 97.3 
24 7 1.0 1.0 98.4 
25 5 .7 .7 99.1 
26 2 .3 .3 99.4 
28 3 .4 .4 99.9 
30 1 .I .1 100.0 
Total 673 96.0 100.0 

Missing System 28 4.0 

Total 701 100.0 

EXERCISE FIGURE 2-1. (Continued). 
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SMOKE SJIWking History 

Cumulative 

Frequency Percent Valid Percent Percent 

Valid 0 Never Smoked 433 61.8 62.1 62.1 

1 Quit Smoking 185 26.4 26.5 88.7 

2 Still Smoking 79 11.3 11.3 100.0 

Total 697 99.4 100.0 

Missing System 4 .6 

Total 701 100.0 

Statistics 

IPA3 

characteriza-
IPAl energy IPA2 reaction tion of life 

TOTAL CONFID LIFE level to pressure as a whole 

N Valid 66! 681 676 700 695 693 
Missing 40 20 25 I 6 8 

Mean 152.7035 62.6975 89 7544 5.01 4.05 5.20 

Median 155.0000 64.0000 92.0000 5.00 4.00 5.00 

Std. Deviation· 28.07608 12.92818 17.08832 1.351 1.705 1.270 

MARITAL marital status 

Cumulative 
Frequency Percent Valid Percent Percent 

Valid 1 Never Married 230 32.8 33.4 33.4 
2 Married 346 49.4 50.3 83.7 
3 Living with 44 6.3 6.4 90.1 
Significant Other 

4 Separated 13 1.9 1.9 92.0 
5 Widowed 20 2.9 2.9 94.9 
6 Divorced 35 5.0 5.1 100.0 
Total 688 98.1 100.0 

Missing System 13 1.9 
Total 701 100.0 

EXERCISE AGURE 2-1. (Continued). 
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score had only one or two missing data points each? The large amount of missing data in 
the TOTAL IPPA scale score is due to the default option in the Compute command in SPSS 
for WindOws. Only cases that have scores for each variable in the Compute statement will 
be used in the procedure. Any case that is missing a data point for a variable in the equa­
tion will be dropped, resulting in missing data in the computed scale score. Thus, if the 
missing data problem is nor addressed before forming subscale and total scores, the result­
ing scores will have a fair amount of missing data. That is what happened to TOTAL (IPPA 
total score) as well as to the CONFID and LIFE IPPA subscale scores. 

Although we are getting ahead of ourselves a bit, we can correct this problem in one 
of two ways. We can replace the missing data in each of the !PAl through IPA30 items by 
substituting the mean or median (if the data are markedly skewed) on that variable for the 
missing data point using the Recede COIIlllland. Once completed, we recompute the total 
score for TOTAL and for the CONFID and LIFE subscales. Then, we rerun the frequencies 
for these variables and compare them to the original frequencies. You should find that 
these recomputed variables have no missing data. 

What we have just described is another way to handle missing data through substitut­
ing the mean or median of the distribution for missing data points. Given the relatively 
small amount of missing data throughout the SURVEY03.SAV dataset, this choice is most 
likely the best, and the easiest, way to handle the missing data problem. However, you 
must decide, based on the amount of skewness in the continUous variables, whether to use 
the mean or the median as the replacement value. For example, what value would you use 
for the AGE variable, or for the HEAL1H variable? 

For nominal level variables such as MARITAL (Marital Status) and POLAFF (Political 
Mfiliation), it is usually best to use the modal value if there is only one mode and not a 
great deal of missing data. If there is more than one mode or lots of missing data, it might 
be best to consider using another method or methods. If all else fails, you may have to live 
with the fact that some cases will have some missing data and, in some analyses, you will 
use only those cases with complete data on the variables of interest. 

2. Exercise Figure 2-2 contains a sample table of two categorical variables. Often, variables 
are combined into one table, but because SPSS for Windows 12.0 presents separate tables 
that can be copied into a manuscript, we have kept them as they appear in the SPSS out~ 
put. Tables are used to present data clearly and succinctly. Nor all the information is 
repeated in the text; generally just the highlights are presented. In our text description, we 
could describe these three variables by stating that over 62o/o of the sample is employed 
full time, and almost half list their political affiliation as independent. When choosing a 
winter vacation, the most popular choice was a beachfront condo in Hawaii, followed by 
a Caribbean cruise and a chalet in the Swiss Alps: about 86% of the respondents selected 
one of those choices. ~11 .. trip to Disney World was the least popular choice. 

3. Exercise Figure 2-3 contains a sample table of continuous variables for respondents' age, 
education, and total scores on the IPPA scale. We created the table using the descriptives 
program in SPSS. We could describe the table in the text by stating that respondents ranged 
in age from 15 to 95 years, with a mean age of 38.1 ::!:: 13 years. They were a well-educated 
group, with an average of 16.6 ::!:: 3.5 years of education. On the IPPA scale, in which 
scores can range from 30 to 210, respondents' actual scores ranged from 51 to 210. 

4. Exercise Figure 2-4 contains the box plot that we ran in SPSS for Wmdows 12.0 by clicking 
on Graphics, then Box plot. The box encloses the data from l:h.e 25th to the 75th percentile 
(50% of the data) for the IPPA total score (TOTAl) by gender. The median is represented by 
the horizontal line within the box. In SPSS, extreme outlying values are defined as those that 
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WORK current work status 

Cumulative 

Frequency Percent Valid Percent Percent 

Valid 0 Unemployed 105 15.0 15.0 15.0 

1 Part Time 159 22.7 22.7 37.8 

2 Full Time 435 62.1 62.2 100.0 

Total 699 99.7 100.0 

Missing System 2 .3 

Total 701 100.0 

POIAFF political affiliation 

Cumulative 

Frequency Percent Valid Percent Percent 

Valid 1 Republican 137 19.5 19.8 19.8 

2 Democrat 225 32.1 32.5 52.3 

3 Independent 330 47.1 47.7 100.0 

Total 692 98.7 100.0 

Missing System 9 1.3 

Total 701 100.0 

WINTER choosing a winter vacation 

Cumulative 

Frequency Percent Valid Percent Percent 

Valid 1 beachfront condo in 294 41.9 42.2 42.2 

Hawaii 

2 chalet in Swiss Alps 145 20.7 20.8 63.0 
3 luxury hotel at Disney 97 13.8 13.9 76.9 
World in Florida 

4 ocean cruise through 161 23.0 23.1 100.0 
Caribbean Islands 

Total 697 99.4 100.0 
Missing System 4 .6 
Total 701 100.0 

EXERCISE FIGURE 2-2. Tables of categorical variables. 
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Statistics 

EDUC 

AGE subject's education 

age in years TOTAL 

N Valid 684 673 661 

Missing 17 28 40 

Mean 38.06 16.60 152.7035 
Std. Error of Mean .496 .133 1.09203 

Median 37.00 16.00 155.0000 

Mode 28 16 162.00 

Std. Deviation 12.972 3.460 28.07608 

Variance 168.266 11.973 788.26649 

Skewness .753 .153 -.612 

Std. Error of Skewness .093 .094 .095 

Kurtosis .796 .474 .472 

Std. Error of Kurtosis .187 .188 .190 

Range 80 23 159.00 

Minimum 15 7 51.00 

Maximum 95 30 210.00 

Sum 26034 11171 100937.00 

EXERCISE FIGURE 2-3. A table describing continuous variables. 
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EXERCISE FIGURE 2-4. A box plot of the variable IPPA total score by gender. 
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are more than three box lengths from the upper or lower edge of the box and are designated 
by asterisks. In this figure, there are no extreme outlying scores. Cases with values between 
1.5 and 3 box lengths from the edges of the box are called outliers and are designated by a 
circle. Although not seen on the box plot, sPss will print next to the circle the code num­
ber(s) of the case(s) with the outlier value. We can then find that specific outlying cases on 
the variable of interest. The plot helps us determine quickly which subjects are associated 
with the outlying values. 
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After reading this chapter, you should be able to do the following: 

1. Describe the principles of statistical inference. 
2. Describe the characteristics of a normal distribution. 
3. Discuss the types of hypothesis testing. 
4. Discuss type I and type II statistical errors. 
S. Define sensitivity, specificity, predictive value, and efficiency. 
6. Discuss tests of significance. 
7. Interpret a confidence interval. 
8. Examine the components of sample size estimation for study populations. 

Statistical inference involves obtaining information from a sample of data about the 
population from which the sample is drawn and setting up a model to describe this 
population. For example, the average birth weight of all newborns in a hospital in 
2002 (population) can be <:stimated using observations from a sample of those new· 
barns. Suppose 810 infants were born in the hospital in 2002, and the birth weights of 
the first 81 newborns (starting January 1) were recorded and averaged. Would the 

. average (mean) birth weight in that sample of 81 be a good estimate of the mean birth 
weight in the 810 (the population of interest)? It would not be if birth weight depends 
on time of year or if an effective prenatal nutrition program to improve birth weight 
had begun in the surrounding community near that time. How can a sample that is 
representative of that population of 810 be selected? One way is by random selection. 

When a random sample is drawn from the population of interest, every member 
of the population has the same probability (chance) of being selected in the sample. 
If the population is a finite one in which every person in the population can be listed, 

73 
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a table of random numbers can then be used to select a random sample of any size. 
Prior to using the World Wide Web 0WWW), most people would use a table of random 
numbers to draw the sample. Now, using the WWW, it is very easy to generate a table 
of random numpers for many different purposes. Two websites that researchers 
have used extensively to generate random number tables are Research Randomizer 

'1'- Chtt;p://www randomizer.org) and Random.org Chtt;p://www.random,org). Both sites 
also permit downloading of randomly generated numbers in a variety of formats, 
including Microsoft Excel. It is very worthwhile to use one of these sites to accomplish 
random number generation for research purposes. 

Random samples have a high likelihood of being representative of the popula­
tion from which they were drawn. In contrast, nonprobability samples, or samples 
nonrandomly selected, are very likely not to represent the populations from which 
they were selected. Suppose a 10% random sample was selected from the popula­
tion of 810 newborns. It is very unlikely that the resulting random sample would be 
the first 81 infants born in 2002. 

Random samples are likely to represent the target population because they are 
based on the principle that each unit in the population has an equal chance of being 
chosen for the sample. Thus, random samples are considered unbiased in that the 
process of random sampling produces samples that theoretically represent the pop­
ulation. Most important, the statistical theory on which this book is based assumes 
random samoling 

Statistical inference is of two types: parameter estimation and hypothesis test­
ing. Parameter estimation takes two forms: point estimation and interval estima­
tion. When an estimate of the population parameter is given as a single number, it 
is called a point estimate. The sample mean, median, variance, and standard devi­
ation would ali be considered point estimates. Thus, the average birth weight for 
the random sample of 81 newborns would be a point estimate. In contrast, inter­
val estimation of a parameter involves more than one point; it consists of a range 
of values-within which the population parameter is thought to be. A common type 
of interval estimation is the construction of afConfidencf! interval B .I narld the upper 
and lower limits of the range of values, called confidence limits. Both point and CI 
estimates are types of statistical estimates that let us infer the true value of an 

J<. unknown population paraffieter using information from a random sample of that 
population. 

Hypothesis testing, the second and more common type of parameter estimation, 
will be discussed later in this chapter. 

NORMAL CURVE 

The normal curoe, also called the Gaussian curve, is a theoretically perfect fre­
quency polygon in which the mean, median, and mode all coincide in the center, 
and it takes the form of a symmetrical bell-shaped curve (Fig. 3-1). De Moivre, a 
French mathematician, developed the notion of the normal curve based on his 
observations of games of chance. Many human traits, such as intelligence, attitudes, 

T 
i 
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AGURE 3-1. The normal curve. 
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and personality, are distributed among the population in a fairly normal way; that is, 
if you measure something, such as an intelligence test, in a representative sample of 
sufficient size, the resulting scores will assume a distribution that is similar to the 
normal curve. Most scores will fall around the mean (an IQ of 100), and there will 
be relatively few extreme scores, such as an IQ below 55 or above 145. 

The nonnal curve is the most important distribution in statistics for three reaso~s 
(Vaughan, 1998). First, although most distributions are not exactly normal, most van­
abies tend to have approximately normal distributions. Second, many inferential sta­
tistics assume that the populations are distributed normally. Third, the normal curve 
is a probability distribution and is used to answer questions about the likelihood of 
getting various particular outcomes when sampling from a population. For exam~le, 
when we discuss hypothesis testing, we will talk about the probability (or the hke­
lihood) that a given difference or relationship could have occurred by chance alone. 
Understanding the normal curve prepares you for understanding the concepts 
underlying hypothesis testing. 

The baseline of the normal curve is measured off in standard deviation (SD) 
units. These are indicated by the lowercase letter z in Fig. 3-1. A score that is 1 SD 
above the mean is symbolized by + 1z, and -1z indicates a score that is 1 SD belo,: 
the m<:an. For example, the wechsler IQ test has a mean of 100 and an SD --
15. Thus, 1 SD above the mean ( + 1z) is determined by adding the SD to the mean 
05 + 100 = 115), and 1 SD below the mean ( -1z) is found by subtracting the S~ 
from the mean (100 - 15 = 85). A score 2 SD above the mean is 15 + 15 + lOO -
130; a score 2 SD below the mean is 100- 05 + 15) = 70. 

When a variable's mean and SD are known, any set of scores can be trans­
formed into z-scores, which have a mean of 0 and an SD of 1. Thus, the z-score tells 
how many SD a given s~ore is above or below the mean of the distribution. The 
general formula for converting a score into a z-score is: 

\z = (Score - ~)~~ \ 
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However, do not assume that converting variable raw scores to z-scores will result 
in a normal distribution: A distribution of z-scores has exactly the same distribution 
as the original distribution. Thus, if the original distribution was positively skewed, 
the resulting z-s~ore distribution will be positively skewed. 

In a normal distribution, approximately 34% of the scores fall between the mean 
and 1 SD above the mean. Because the curve is symmetrical, 34% also fall between 
the mean and 1 SD below the mean. Therefore, 68% of scores fall between -1z and 
+ 1z. With the Wechsler IQ test, this means that 68%, or approximately two thirds of 
the scores, will fall between 85 and 115. Of the one third of the scores remaining, 
one sixth will fall below 85, and one sixth will be above 115. 

Of the total distribution, 28% fall between 1 and 2 SD from the mean, 14% fall 
between 1 and 2 SDs above the mean, and 14% fall between 1 and 2 SD below the 
mean. Thus, 96% of the scores (14 + 34 + 34 + 14) fall between ±2 SD from the 
mean. For the Wechsler IQ test, this means that 96% of the population receive scores 
between 70 and 130. Most of the last 4% fall between 2 and 3 SD from the mean, 2% 
on each side. Thus, 99.7% of those taking the Wechsler IQ test score between 55 and 
145. 

Two other z-scores are important because we use them when constructing 
confidence intervals. They are z = ± 1.96 and z = ±2.58. Of the scores in a distri­
bution, 95% fall between ± 1.96z, and 99"A> fall between ±2.58z. For additional 
practice with the normal curve, look at the Graduate Record Examination (GRE) 
scores in Fig. 3-1. Each section of the GRE was scaled to have a mean of 500 and 
an SD of 100. A person who scored 600 on ·this test would be 1 SD above the mean, 
or at the 84th percentile. (The 50th percentile is the mean, and 34% above the mean 
equals the 84th percentile.) 

PERCENTILES 

In Chapter 2, we pointed out that percentiles allow us to describe a given score in 
relation to other scores in a distribution. A percentile tells us the relative position of 
a given score and allows us to compare scores on tests that have different means 
and SDs. A percentile is calculated as 

number of scores less than a given score 
. · X 100 

· total number of scores 

Suppose you received a score of 90 on a test given to a class of 50 people. Of 
your classmates, 40 had scores lower than 90. Your percentile rank would be: 

(40/50) X 100 = 80 

You achieved a higher score than 80% of the people who took the test, which also 
means that almost 20o/o who took the test did better than you. 

As mentioned in Chapter 2, the 25th percentile is called the first quartile; the 
50th percentile, the second quartile or more commonly the median; and the 75th 
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percentile, the tbiraqitartile. The quartiles are points, not ranges like the interquar­
tile range (IQR). Therefore, the third quartile is not from 50 to 75; it is just the 75th 
percentile. A score is not said to fall within a quartile, because the quartile is only 
one point. 

As demonstrated with the GRE score of 600, we also can determine percentile 
rank by using the normal curve. For another example, in Fig. 3-1, the IQ score of 85 
exceeds the score of 16% of the population, so a score of 85 is equal to a percentile 
rank of 16. To test your understanding, determine the percentile rank of a GRE score 
of 700. Remember that a percentile rank is not a percentile. The percentile rank is the 
percentage of observations below a certain score value; a percentile is a score value 
below which a certain number of observations in a distribution fulls. 

Tables make it possible to determine the proportion of the normal curve found 
between various points along the baseline. They are set up as in Appendix A. To 
understand how to read the table, go down the first column until you come to 1.0. 
Note that the percentage of area under the normal curve between the mean and a 
standard score (z-score) of 1.00 is 34.13. This is how the 34% was determined in 
Fig. 3-1. Moving down the row to the right, note that the area under the curve 
between the mean and 1.01 is 34.38, between the mean and 1.02 is 34.61, and 
so forth. 

Suppose you have a standard score of + 1.39 (the next section discusses how to 
calculate the z-scores). Finding this score in the table, we see that the percentage of 
the curve between the mean and 1.39 is 41.77. A plus z-score is above the mean, so 
500/o of the curve is on the minus z side, and another 41.77% is between the mean and 
+1.39; the percentile rank is 91.77 (50+ 41.77). If the z-score were -1.39, the score 
would fall below the mean, and the percentile rank would be 8.23 (50 - 41.77). 

In summary, to calculate a percentile when you have the standard score, you 
first look up the score in the table (Appendix A) to determine the percentage of the 
normal curve that falls between the mean and the given score. Then, if the sign is 
positive, you add the percentage to 50. If the sign is negative, you subtract the per­
centage from 50. 

When using percentiles to determine relative position, it is important to remem­
ber the following points: 

1. Because so many scores are located near the mean and so few at the ends, the 
distance along the baseline in terms of percentiles varies a great deal. 

2. The distance between the 50th percentile and the 55th percentile is much 
smaller than the distance between the 90th and the 95th. 

What this means in practical terms is that if you raise your score on a test, there 
will be more impact on your percentile rank if you are near the mean than if you are 
near the ends of the distribution. For example, suppose three people again took the 
GRE quantitative examination in hopes of raising their scores and thus their percentile 
ranks (Table 3-1). All three subjects raised their score by 10 points. For subject 1, who 
was right at the mean, that meant an increase of 4 points in percentile rank, whereas 
for subject 3, who was originally 2 SD above the mean, the percentile rank went up 
only half a point. 
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I TABLE 3-1 Relotwnslup of Scares to Percentdes at Vmy.>·g D1stances 
~-om the Alecm 

Subject Scores GRE-Q 

I 1st score 500 
2nd score 510 

2 1st score 600 
2nd score 6!0 

3 1st score 700 
2nd score 710 

Percentile 

50 
54 
84 
86 
97.7 
98.2 

STANDARD SCORES 

Standard scores are a way of expressing a score in terms of its relative distance from 
the mean. A z-score is one such standard score. The meaning of an ordinary score 
varies depending on the mean and the SD of the distribution from which it was drawn. 
In research, standard scores are used more often than percentiles. Thus far, we have 
used examples when the z-score was easy to calculate. The GRE score of 600 is 1 SD 
above the mean, so the z-score is + 1. The formula -used to calculate z-scores is: 

X-M z=---
SD 

The numerator is a measure of the deviation of the score from the mean of the 
·distribution. The following calculation is for the GRE example: 

z = (600 - 500)/100 = 100/100 = 1 

As another example, suppose a person obtained a score of 50 on a test in which the 
mean was 36 and the SD was 4. 

z = (50 - 36)/4 = 14/4 = 3.5 

Using the table in Appendix A, we find that 49.98% of the curve is contained 
between the mean and 3.5 SD above the mean, so the percentile rank for this score 
would be 99.98 (50+ 49.98). 

Suppose the national mean weight for a particular group is 130 pounds, and the 
SD is 8 pounds. An individual from the group, Jane, weighs 110 pounds. What is 
Jane's z-score and percentile rank? 

z = {llO - 130)/8 = -20/8 = -2.5 

Jane's percentile rank is 50 - 49.38, or 0.62. 
If all the raw scores in a distribution are converted to z-scores, the resulting dis­

tribution Will have a mean of zero and an SD of 1. If several distributions are converted 
to z-scores, the z-scores for the various measures can be compared directly. Although 

~ 
I 
' ' 
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each new distribution has a new SO and mean (1 and 0), the shape of the distribution 
is not altered. 

Transformed Standard Scores 

Because calculating z-scores results in decimals and negative numbers, some people 
prefer to transform them into other distributions. A widely used distribution is one with 
a mean of 50 and an SO of 10. Such transformed standard scores are generally called 
T-scores, olthougb some authors call them Z-scores. Some standardized test results are 
given in T-scores. To convert a z-score to a T-score, use the foJlowing formula: 

T=10z+50 

For example, with a z-score of 2.5, the T-score would be: 

T = (10)(2.5) + 50 

T= 25 +50 

T= 75 

In the new distribution, the mean is 50 and the SO is 10, so a score of 75 is still 
2.5 SO above the mean. 

In the same way, other distributions can be established. This is the technique 
used to transform z-scores into GRE scores with a mean of 500 and an SO of 100. 
The basic formula for transforming z-scores is to multiply the z-scores by the desired 
SO and add the desired mean: 

transfor111ed z-scores = (new SO )(z-score) + (new mean) 

Suppose you wanted to transform your zcscores into a scale with a mean of 70 
and an SO of 10. Then your formula would be 10z + 70. Transfonning scores in this 
way does not change the original distribution of the scores. In some circumstances, 
however, a researcher may want to change the distribution of a set of data. This 
might occur when you have a set of data that is not normally distributed. 

CORRECTING FAILURES IN NORMALITY THROUGH DATA TRANSFORMATIONS 

Many statistical techniques as.c;;ume that data are normally distributed in the popula­
tion being studied. Even though many methods will work just as well when this 
assumption is violated (Glass & Hopkins, 1996), data transformation is often recom­
mended to convert original scores to another metric that approximates normality. 
Such transformations, however, should be approached with caution because they 
make interpretation of the results more difficult. The transformed scales are not in 
the same metric as the original; thus, measures of central tendency and dispersion 
are not clear in relation tb the original measure. 

As discussed in Chapter 2, Tabachnick and Fidel! (2001) recommend procedures 
for handling skewness problems. Because the impact of skewness .on data analysis, 
results, and interpretation is often overlooked, this information bears repeating. 
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First, determine the direction of the deviation. Positive skewness, with the long tail 
to the right, can be handled in a straightforward manner. However, if a variable has 
negative skewness, with the long tail to the left, it is best to make it positive by 
"reflecting" it before transformation. (Reflecting a variable is the same as reverse­
coding of all scores in the distribution using a RECODE command so that what was 
once the lowest score becomes the highest score and so on for aU values in the dis­
tribution.) This is done as follows: 

1. Find the largest value in the distribution and add one to it to form a constant 
that is larger than any score in the distribution. For example, if the largest score 
in a distribution is 24, adding one forms a constant of 25 (24 + 1 = 25). 

2. Create a new variable by subtracting each score in the distribution from this 
constant. The new variable, which originally was negatively skewed, now has 
a positive skewness. 

The reflected variable's interpretation changes in the opposite direction as well. 
If high scores on a variable before it was reflected indicated a large amount of a char­
acteristic, these scores, after reflection, signify a small amount of that characteristic. 

Once the direction of the skew has been addressed, use 

• A square root transformation for moderate skewness, 
• A log transformatiOn for severe skewness, 
• An inverse transformation for very severe, or ]-shaped, skewness (Tabach­

nick & Fidel!, 2001). 

After each attempt at correcting the skew, recalculate che measure of skewness 
to determine whether the variable is normally, or nearly normally, distributed after 
transformation. If the transformed variable has a more normal distribution, then 
use it in subsequent data analyses. Repon your use of the transformed variable in 
subsequent tables and in the narrative of the research repon. If transformations are 
not successful, consider creating a categorical (nominal) variable in place of the 
continuous variable. 

CENTRAL UMITTHEOREM 

If you draw a sample from a population and calculate its mean, how close have you 
come to knowing the mean of the population? Statisticians have provided us with 
formulas that allow us to determine just how close the mean of our sample is to the 
mean of the population. I 

When many samples are drawn from a population, the means of these samples 
tend to be normally distributed; that is, when they are chatted along a baseline, they 
tend to form the normal curve. The larger the number of samples, the more the 
distribution approximates the normal curve. Also, if the average of the means of 
the samples is calculated (the mean of the means), thiS average (or mean) is very 
close to the actual mean of the population. Again, the larger the number of samples, 
the closer this overall mean is to the population mean. 
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If the means form a normal distribution, we can then use the percentages under 
the normal curve to determine the probability statements about individual means. 
For example, we would know that the probability of a given mean falling between 
+ 1 and -1 SD from the mean of the population is 6SOAI. 

To calculate the standard scores necessary to determine position under the nor­
mal curve, we need to know the SD of the distribution. You could calculate the SD 
of the distribution of means by treating each mean as a raw score and applying the 
regular formula. This new SD of the means is called the standard error of the mean. 
The term error is used to indicate the fact that due to sampling error, each sample 
mean is likely to deviate somewhat from the true population mean. 

Fo~nately, statisticians have used these techniques on samples drawn from 
known populations and have demonstrated relationships that allow us to estimate 
the mean and SD of a population given the data from only one sample. They have 
established that there is a constant relationship between the SD of a distribution of 
sample means (the standard error of the mean), the SD of the population from 
which the sampl<:s were drawn, and the size of the samples. We do not usually 
know the SD of the population. If we had measured the whole population, we 
would have no need to infer its parameters from measures mken from samples. The 
formula for the standard error of the mean can be written as: 

standard deviation 

square root of n 

The formula indicates that we are estimating the standard error given the SD of 
a sample of n size. A sample of 30 (Vaughan, 1998) is enough to estimate the popu­
lation mean with reasonable accuracy. Given the SD of a sample and the size of the 
sample, we can estimate the standard error of the mean. For example, given a sam­
ple of 100 and an SD of 40, we would estimate the standard error of the mean to be: 

40/\1100 = 40/10 = 4 

Two factors influence the standard error of the mean: the SD of the sample and 
£he sample size. The sample size has a large impact on the size of the error because 
the square root of n is used in the denominator. As the size of n increases, the size 
of the error decreases. Suppose we had the same SD as just demonstrated, but a 
sample size of 1,000 instead of 100. Now we have 40/V1,000 = 40/31.62 = 1.26 a 
much smaller standard error. This shows that the larger the sample, the less the 
error. If t..I-Iere is less error, we can estimate more precisely the parameter.<> of the 
population. 

If there is more variability in the sample, the standard error increases. If there is 
much variability, it is harder to draw a sample that is representative of the popula­
tion. Given wide variability, we need larger samples. Note the effect of variability 
(SD) on the standard error of the mean. 

201V100 = 20110 = 2 

40/VIOO·= 40110 = 4 

As is shown later in this chapter, the standard error of the mean underlies the 
calculation of the confidence interval. 
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PROBABiliTY 

Ideas about probability are of primary importance to health care researchers. The 
use of data in making decisions is a hallmark of our information world, and proba­
bility provides a means for translating observed data into decisions about the nature 
of our world (Katz & Stroup, 1983). For example, probability helps us to evaluate 
the accuracy of a statistic and to test a hypothesis. Thus, research findings in jour­
nals often are stated in terms of probabilities and are often communicated to patients 
using this language. The approach to probability in this chapter is practical, with 
special attention given to concepts that are impmtant later in this text. Probability 
also underlies the use of logistic regression, presented in Chapter 13. 

In the life of a health care professional, questions about probability frequently 
occur in connection with a patient's future. For example, suppose patient X's mammo­
gram revealed a cluster of five calcifications with no other signs of breast abnormality. 
The patient is told she should have a breast biopsy based solely on these X-ray find­
ings. If the patient asks about the probability that the biopsy will reveal a malignancy, 
health care professionals refer to the literature. Powell, McSweeney, and Wilson (1983) 
studied 251 patients who underwent a breast biopsy with mammographic calcifications 
as the only reason for the biopsy. Everyone in the sample had at least five microcalci­
fications in a well-defined cluster. Cancer was found in 45 of these patients (17.9"/o). 
Consequently, the patient might be told that the probability of cancer was 17.9%. 

What has really been stated? The health care practitioner has presumably imag­
ined that the names of the 251 patients in the study were placed in a hat, and one 
name was drawn by chance. The odds of drawing the name of one of the 45 patients 
with cancer are 45 in 251, or 17.9"/o. Patient X, of course, is not one of the 251 names 
in the hat, but the practitioner is thinking along the lines of, "What if she were?" This 
way of thinking, although hypothetical, is reasonable if patient X is sintilar to the group 
of 251 patients in the study. Powell et al. 0983) described the sample of 251 patients 
as consecutively chosen over a period of 18 years from the practice of one surgeon at 
one hospital. Although this information implies a fairly broad sample, it does not 
provide any breakdown by prognostic variables. 

An outcome may vary according to membership in a certain subset of a total 
group. For example, in 1982, a male patient was diagnosed with a rare form of 
abdominal cancer (Gould, 1985). The patient read that the median mortality was 
8 months after diagnosis; therefore, he reasoned that his chances of living longer 
than 8 months were 50%. On reading further, he decided that his chances of being 
in that 50% who lived longer were good: He was young, the disease was discovered 
early, and he was receiving the best treatment. He also realized that the survival dis­
tribution was undoubtedly skewed to the right, indicating that some patients lived 
for years with the disease. Therefore, if he was in the upper 50%, his chances of 
living a lot longer than 8 months were very good. 

Self-Evident Truths (Axioms) about Probabilities 

All probabilities are between 0% and 100%, as illustrated in Fig. 3-2. There are no 
negative probabilities. If the probability of something happening is O"'o, then it is 
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AGURE 3-2. Diagram of the scale of probabilities. 
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impossible. Although one must be careful about assigning a probability of 00/o to an 
event, it is highly likely that the probability is 0% that a 98-year-old woman would 
give binh to a newborn. If the probability of an event is 100%, then we are cenain 
that it will occur. The eventual death of a person has a probability of 100%. 

The probability of an event is 100% minus the probability of the opposite event. 
Perhaps a different health care worker would have preferred to tell patient X there 
was an 82.1% chance that the breast microcalcifications would not be malignant. 
This would be accurate because 100%- 17.9% = 82.1%. 

Table 3-2 lists the four possibilities for the sample of 45 women who were diag­
nosed with cancer after a biopsy based on a suspicious mammogram, as given by 
Powell et al. (1983). The sum of all the possibilities for an event is 100%. The sum 

• TABLE 3-2 Jv1ahgnant Pathology of X Ray CalcrficatJOns 

N Pathology ____ ____-:::__ _________ ~-----·---------

Duct cancer, in situ 

Lobular cancer, in situ 

Duct, invasive 

Lobular, invasive 

25 
9 
9 
2 

45 
(100%) 

Data from Powell, R. W., McSweeney, M. B., & Wilson, C. E. (1983). X-ray calcifi­
cations as the only basis for breast biopsy. Annals of Surgery, 197, 555-559. 
Modified slightly to represent individual patients rather than 47 breasts from 
45 patiems. 
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of the four outcomes in Table 3-2 is 1000/o, indicating that it is certain that one of 
these possibilities will occur. 

Definitions of Probability 

FREQUENCY PROBABILITY 

Most health care professionals, however, think of probability in the sense of a fre­
quency or statistical probability---that is, they think of probability as a percentage based 
on empirical observation, which allows them to make an intelligent guess about the 
future. Their definition for such a probability, based on observations from a sample, is: 

number of times the event occurred 
sample probability = · X 100 

total number of people in the sample 

For patient X with the suspicious mammogram findings, the health care worker 
would substitute as follows: 

probability of cancer= (451251) X 100 = 17.9% 

Patient X was not a member of the group of 251 patients, but the hypothetical 
type of thinking, "What if patient X were from that group?" is at least reasonable as 
a practical type of probability. It helps to be able to argue logically that patient X 
might have been a member of the total group of 251 patients. 

In mathematical theory, however, probabilities are meaningful only in the context 
of chance. We also have to imagine that patient X was chosen "by chance" from the 
total sample, which implies a random choice. There are two criteria for a random 
process. First, every item must have an equal chance of being chosen. In the case of 
drawing from a hat, this means that attention must be given to details, such as whether 
each name was written on the same-size slip of paper, whether the slips were well 
mixed, whether the person who drew from the hat was blindfolded, and so forth1 

Second, each choice must be independent of every other choice. This means that we 
must not be able to predict whose name will be drawn @er patient X. 

These criteria for a random process also are importarit when we consider the 
larger question of whether the 17.9% probability of cancer would still be the same if 
more patients were followed. The mathematical definition for a frequency probabil­
ity invokes the law of averages; that is, we must think of drawing more patients at 
random. As the sample becomes larger and larger, the percentage will converge to 
the true or population value. 

I babil 
total number of times the event occurred 

popu ation pro · ity = x 100 
total number of people in the population 

Thus, the sample probability is an estimate of the population probability. A random 
sample provides, in theory, a better estimate of.the population probability. 

1Health care researchers who wish to draw a random sample avoid having to deal with such details by 
using a random number rable or Research Randomizer. 
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In a brief discussion section following the article by Powell et al. (1983), Letton 
reported on.a second sample of 269 patients collected for 10 yeaiS. A mammogram 
indicated calcium deposits, and subsequent biopsies revealed that 46 patients 
(17: 1 %) had cancer. Thus, a second study, again with a nonrandom sample, pro­
duced remarkably similar results to those of Powell et al. 

Random sampling is infrequently used in health care research (Burns & Grove, 
2001; jacobsen & Meininger, 1985; McLaughlin & Marascuilo, 1990). Patients who 
arrive for care become the sample, and health care researchers take all they can get 
rather than drawing random samples. These sample probabilities, although not 
based on a chance process, remain as our only estimates of the true or population 
probabilities. 

Frequency probabilities are based on empirical observations and can thus be 
termed objective. However, not all probabilities that can be considered objective are 
determined empirically. For example, when tossing a fair coin, the probabilities of 
heads or tails can be deduced logically without ever actually tossing the coin. These 
are called a priori (before the fact), or prior, probabilities. Derdiarian and Lewis 
(1986) provided an illustration of how a priori probabilities could be used in health 
care research. Each of three raters was asked to code an item from an interview tran...: 
script as belonging to category 1 or category 2. There are eight possible outcomes, as 
listed in Table 3-3. All three raters could agree that the item belonged in category 1 
(1-1-1), or they could disagree, for example, with the first rater coding the item as 
category 1 and the other two coding the item as category 2 (1-2-2). U all of these out­
comes are equally probable by chance, then each will have a probability of 1 in 8. 
Derdiarian and Lewis (1986) showed how comparing actual results to the tabled 
probabilities can provide a measure of inter-rater agreement. 

I TABLE 3-3 Probability of Eight Possible Outcomes for Three Raiets Codmg 
an Item Into Dichotomous Cotegones (7 or 2) by Chance 

Outcome 

Rater#1 Rater#2 Rater#3 Probability 

I 1 \Is 

1 I 2 'lo 

1 2 I 'lo 

2 1 I 'Ia 

1 2 2 'Ia 

2 I 2 \Is 

2 2 1 \Is 

2 2 2 \Is 

Derdiarian, A. K., & Lewis, S. (1986). The D-L test of agreement: A stronger measure of interrater 
reliability. Nursing Research, 35, 375-378. 
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SUBJECftVE PROBABILITY 

Another definition for probability is a percentage that expresses our personal, sub­
jective belief that an event will occur. Fisher and van Belle (1993) emphasize that 
these judgments are not whimsical or irrational; they are based on empiric evidence 
chosen for some personal reason. In the example of patient X with the suspicious 
mammogram findings, what is the health care professional's opinion about the prob­
ability of 17.9% that the calcifications are cancer? If the patient was told that the 
probability was close to zero that the biopsy findings would be malignant, then we 
would be surprised if it turned out to be cancer. On the other hand, most health care 
professionals would not view a probability of 17 .9"10 as "close to zero." A practitioner 
would not be very surprised if the calcifications turned out to be cancer, and that is 
why patient X with five or more calcifications in a cluster was recommended for 
biopsy. 

When testing hypotheses, which is discussed later in this text, researchers focus 
on probabilities (often called p values) that fall at the lower end of the continuum in 
Fig. 3-2. Generally, probabilities that are 5% or less are considered unusual in 
research. The reasons for this are partly intuitive and partly historic. For example, as 
part of a statistics class, the professor would toss a coin and arrange for it to turn up 
heads all the time. Intuitively, students begin to laugh and become skeptical after 
seeing four or five heads in a row. The probability of four heads in a row by chance 
is approximately 6%, and the probability of five heads in a row is approximately 3%. 
Note that 5% falls between the two. 

The historic reasons for the 5% cutoff are partly based on the preference of 
Sir Ronald Fisher. Moore (1991) quotes Fisher as writing in 1926 that he preferred 
the 5% point for marking off the probable from the improbable. Because Fisher was 
an extremely influential statistician, others adopted this rule too. Moreover, the past 
inconveniences of calculating have influenced the choice of the 5% mark. Before 
the computer age, the tables for probabilities for various distributions in textbooks 
were constructed with handy columns such as 20%, 10%, 5%, and 1 %-presumably 
because we have five fingers and our number system is based on 10. Today, these 
tables and the use of the 5% level are "almost obsolete" (Freedman et al., 1991, 
p. 494) because the computer can produce an exact probability based on a mathe­
matical equation. Many researchers and editors of journals, however, persist in using 
the 5% mark as a cutoff for "unusual" simply because it is convenient to have some 
general standard that is easy to grasp. 

Instead of using the 5% criterion, however, researchers often adopt probability 
cutoffs that are more generous (eg, 10%) or more strict (eg, 1%) based on their own 
intuition or the purposes and design of their research. Oftentimes when the 
researcher is interested in exploring relationships among variables and not hypoth­
esis-testing, a less-stringent cutoff, such as 10% or 20%, might be used. In contrast, 
a researcher might set the cutoff level at 1% because of testing several hypotheses 
using one dataset. 

At the higher end of the probability continuum, researchers consider probabili­
ties of 95% or more as evidence for reporting potential events that they are confident 
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will occur. The oft-quoted probability of 95% for recovery from skin cancer is empir­
ically derive.d, and most health care workers would be surprised if recovery did not 
occur. Likewise, probabilities near the upper end of the probability scale frequently 
are used to express confidence in a statistic. For example, a poll reported that 38% of 
a pre-election random sample favored candidate A. The margin of error was given as 
3%, with 95% confidence. 

HYPOTHESIS TESTING 

Given an underlying theoretical structure, a representative sample, and an appro­
priate research design, the researcher can test hypotheses. We test to see whether 
the data support our hypothesis. We do not claim to prove that our hypothesis is 
true, because one study can never prove anything; it is always possible that some 
error has distorted the findings. 

Null Hypothesis and Alternative Hypothesis 

Hypothesis testing is a predominant feature of quantitative health care research. 
Hypotheses originate from the theory that underpins the research. When a hypoth­
esis relates to the characteristics of a population, such as population parameters, 
statistical methods can be used with sample data to test its soundness. 

There are two types of hypotheses: null and alternative. The null hypothesis pro­
poses no difference or relationship between the variables of interest. Often written 
as H.,, the null hypothesis is the foundation of the statistical test. When you statisti- · 
cally test a hypothesis, you assume that H0 correctly describes the state of affairs 
between the two variables of interest. If a significant difference or relationship is 
found, the null hypothesis is rejected; if no difference or relationship is found, H0 is 
accepted. 

The alternative hypothesis, represented by H, is a hypothesis that contradicts 
H0 • The alternative hypothesis can- indicate the direction of the difference or rela­
tionship that you expect. Thus, the alternative hypothesis is often called the 
research hypothesis, represented by H, (Agresti & Finlay, 1997). 

Types of Error 

When we sample, we select cases from a predetermined population. Due to chance 
variations in choosing the sample's few cases from the population's many possible 
cases, the sample will deviate from the defined population's true nature by a certain 
amount. This deviation is called sampling error. Thus, inferences from samples to 
populations are always probabilistic, meaning we can never be 100% certain that 
our inference was correct. 

Drawing the wrong conclusion is called an error of inference. There are two 
types of errors of inference, defined in terms of the null hypothesis: type I and type II. 
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Before describing these errors, the possibilities related to decisions about the null 
hypothesis are presented using the following diagram: 

Decision 

Accept H0 

Reject H0 

True 

OK 

Type I 

Null Hypothesis 

False 

Type II 
OK 

If H0 is true and we accept that hypothesis, we have responded correctly. The 
incorrect response would be to reject a true null hypothesis (type I error). If H0 is 
false and we reject it, we have responded correctly. The wrong response would be 
to accept a false null hypothesis (type II error). 

Suppose you compared two groups of patients with diabetes taught by different 
methods (A and B) on how to care for themselves at home, and the data indicated 
that group A scored significantly higher than group B. You would then reject H0 • 

Suppose, however, that group A had more diabetics with knowledge about caring 
for themselves at home and that the method actually did not matter at all. Rejecting 
the null hypothesis is a type I error. 

The probability of making a type I error is called alpha (a) and can be decreased 
by altering the significance level. In other words, you could set the p at 0.01 instead 
of 0.05; then there is only 1 chance in 100 (1%) that the result termed significant 
could occur by chance alone. If you do that, however, you will make it more diffi­
cult to find a significant result; that is, you will decrease the power of the test and 
increase the risk of a type II error. 

A type II error is accepting a false null hypothesis. If the data showed no signif­
icant results, the researcher would accept the null hypothesis. U there were signifi­
cant differences, a type II error would have been made. To avoid a type II error, you 
could make the level of significance less extreme. There is a greater chance of find­
ing significant results if you are willing to risk 10 chances in 100 that yol! are wrong 
(p = 0.10) than there is if you are willing to risk only 5 chances in 100 (p = 0.05). 
Other ways to decrease the likelihood of a type II error a;-e to increase the sample 
size, decrease sources of extraneous variation, and increase the effect size. The 
effect size is the impact made by the independent variable. For example, if group A 
scored 10 points higher on the diabetic self-care knowledge scale than group B, the 
effect size would be 10 divided by the SO of the measure (Cohen, 1988). 

There is a trade-off, however, because there is an inverse relationship between 
type I and type II error. Decreasing the likelihood of a type II error increases the 
chance of a type I error. U decreasing the probability of one type of error increases 
the probability of the other type, the question arises: Which type of error are you 
willing to risk? As you might expect, that depends on the study. An example would 
be a test for a particular genetic defect. If the defect exists and is diagnosed early, it 
can be successfully treated; however, if it is not diagnosed and treated, the child will 
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become severely retarded. On the other hand, if a child is erroneously diagnosed as 
having tbe defect and treated, no physical damage is done. 

In terms of the types of errors, a type I error would be diagnosing the defect 
when it does not exist. In that case, the child would be treated but not harmed by 
the treatment. In contrast, a type II error would be declaring the child to be normal 
when he or she is not. In that case, irreversible damage would be done. In such a 
situation, it is obvious that you would make every attempt to avoid the type II error. 

Suppose a national study was conducted to determine whether a particular 
approach to preschool preparation of underprivileged children leads to increased 
success in school. This approach would cost a great deal of money to implement 
nationwide. Those responsible for deciding whether to implement this approach 
would certainly want to be sure that a type I error had not been made. They would 
not want to institute a costly new program if it did not really have any effect on 
success in school. 

Type I and II errors are hard for some people to grasp, so here are a few exam­
ples to help you understand the concept. Let's hypothesize that the two diabetic 
groups are equal in their knowledge of taking care of themselves. Has an error been 
made, and if so, what type of error, if tbe researcher does the following? 

1. Accepts tbe null hypothesis when the groups are really equal in diabetic self­
care knowledge. 

2. Rejects the null hypothesis when the groups are really equal in diabetic self­
care knowledge. 

3. Rejects the null hypothesis when the groups are really different in their diabetic 
self-care knowledge. 

4. Accepts the null hypothesis when one group has much more diabetic self-care 
knowledge than the other. 

These four examples summarize the possibilities surrounding these errors. First, 
if we are given a siruation in which H0 is true-that is, there is no difference-we can 
either accept it and make the correct decision (#1), or reject it and make an incorrect 
decision, or a type I error (#2). Second, if H0 is false, we can reject it, making a cor­
rect decision (#3), or accept it and make an incorrect decision, or a type II error (#4). 

Sensitivity, Specificity, Predictive Value, and Efficiency 

When thinking about types of errors, there is an analogy that can be drawn to diag­
nostic testing for specific diseases. Clinicians routinely order tests to screen patients 
for the presence or absence of disease. There are four possible outcomes to diag­
nosing and testing a particular patient: True Positive (TP), where both diagnosis and 
test are positive for the disease; True Negative (TN), where both diagnosis and test 
are negative; False Positive (FP), where the diagnosis is positive and the test is neg­
ative for the disease; and false Negative (FN) where the diagnosis is negative for the 
disease and the test is positive for it (Kraemer, 1992). Essex-Sorlie 0995) notes that 
a type I error resembles a false positive outcome, occurring when a clinical test result 
incorrectly indicates disease presence. A type II error is comparable to a false 
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negative (FN) outcome, indicating a test result incorrectly points to disease absence. 
The following 2 X 2 table is often used as a way to depict the relationship between 
the various outcomes. 

Test Positive 

Test Negtltive 

Condition Present 

True Positive (TP) 
False Negative (FN) 

Condition Absent 

Paise Positive (FP) 
True Negative (TN) 

The terms used to define the clinical performance of a screening test are sensi­
tivity, specificity, positive predictive value, negative predictive value, and efficiency. 
Test sensitivity (Sn) is defined as the probability that the test is positive when given 
to a group of patients who have the disease. It is determined by the formula Sn = 

(TP/(TP + FN)) X 100. In other words, sensitivity can be viewed as, 1 - the false 
negative rate, expressed as a percent. 

For example, Harvey and colleagues (1992) undertook a study to assess the use of 
plasma D-dimer levels for diagnosing deep venous thrombosis (DVI) in 105 patients 
hospitalized for stroke rehabilitation. Plasma samples were drawn from patients within 
24 hours of a venous ultrasound screening for DVT. Of the 105 patients in the study, 
14 had DVfs identified by ultrasound. The optimal cutoff for predicting DVT was a 
D-<limer > 1,591 ng/ml. Test results showed the following: 

d-Dimer > 1,591 ng/ml. 
d-Dimer "' 1,591 ng/ml. 

Positive Ultrasound 

13 (TP) 
1 (FN) 

14(TP+FN) 

Negative Ultrasound 

19 (FP) 
72 (TN) 

91 (FP +TN) 

Using the above formula, Sn = (TP/(TP + FN)) X 100 = 13/14 X 100 = 93, the sen­
sitivity for the D-dimer test for diagnosing DVTs is 93o/o. The larger the sensitivity, the 
more likely the test is to confirm the disease. The D-dimer's test for diagnosing the 
presence of DVT is accurate 93o/o of the time. 

The specificity (Sp) of a screening test is defined as the probability that the test 
will be negative among patients who do not have the disease. Its formula is Sp = 

(1N/(1N + FP)) X 100 and can be understood as 1 - the false positive rate, 
expressed as a percent. 

In the same example, the specificity for the D-dimer test was 79o/o (Sp = (721 
(72 + 19)) X 100 = 72191 X 100 = 79o/o). A large Sp means that a positive test can 
rule out the disease. The D-dimer's specificity of 79"A> indicates that that test is fairly 
good in ruling out the presence of pvrs in rehabilitation stroke patients. 
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The positive predictive value (PPV) of a test is the probability that a patient who 
tested positive for the disease actually has the disease. The formula for PPV is PPV = l 
(TP!(TP + FP)) X 100. Again using the D-dimer test for predicting DVT, its PPV is 
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calculated as PPV = (13/(13 + 19)) X 100 = 13/32 X 100 = 40.6 or 41%. This means 
that only 41 out of every 100 screened patients is likely to be a correctly diagnosed 
and 59 out of 100 are likely to be false positives. 

The negative predictive value (NPV) of a test is the probability that a patient who 
tested negative for a disease will not have the disease. It is calculated as NPV = (TN! 
(1N + FN)) X 100. Using this formula in the above D-<limer test example, NPV = (721 
(72 + 1)) X 100 = 72173 X 100 = 98.6 or 99"Al. This value indicates that 99 out of 100 
patients screened are likely to be true negatives. Thus, the D-dimer test is outstanding 
at ruling out DVfs in rehabilitation stroke patients who test negative for their presence. 

The efficiency (EFF) of a test is the probability that the test result and the diag­
nosis agree (Kraemer, 1992) and is calculated as EFF = ((TP + lN)/(TP + TN + 
FP + FN:)) X 100. In the D-dirner test example, EFF = ((13 + 72)/(13 + 72 + 19 + 
1)) X 100 = 851105 X 100 = 80.9"/o. Thus, the efficiency of this test in diagnosing 
rehabilitation stroke patients with DVfs is almost 81%. 

SUMMARY 

Sensitivity, specificity, predictive values, and efficiency of outcome measures are 
often reported in health care research studies. Sensitivity depends solely on how 
positive and negative test results are distributed within a diseased population 
whereas specificity depends only on how results are distributed in a nondiseased 
population. Positive predictive values are related to sensitivity and negative predic­
tive values are associated with specificity. Efficiency is the overall accuracy of the 
test in measuring true findings divided by all of the test results. 

In addition to the above calculations, clinical researchers may compute likeli­
hood ratios and relative risks (discussed in later chapters in this book) and receiver 
operator characteristic (ROC) curve analysis, which graphically portrays a series of 
sensitivities and specificities for a given test. Kraemer (1992) provides a full treat­
ment of ROC curve analysis. An excellent example of the use of ROC curve analysis 
in instrument validation can be found in Curley et a!. (2003). 

Significance level (p Value) 

In significance testing, we evaluate differences between what we expect on the 
basis of our hypothesis and what we observe, but only in relation to one criterion, 
the probability (p) that these differences could have happened by chance (Elwood, 
1998; Henkel, 1986). Chance; or random, factors are those associated with the man­
ner in which the observations used to test the hypothesis were chosen. 

In significance testing, we have these two assumptions: H, is true and only chance 
factors could produce results different from what was hypothesized. We then obtain a 
distribution of possible outcomes, their relative frequency of occurrence, and the like­
lihood (or probability) that any particular observation would occur. The p value is the 
chief reported result of a significance test and enables us to judge the extent of the evi­
dence against H0 • The p value, which ranges from 0.00 to 1.0, summarizes the evidence 
in the data about H,. A large p value, such as 0.53 or 0.78, indicates that the observed 
data would not be unusual ifH, were true. A smallpvalue, such as 0.001, denotes that 
these data would be very doubtful if H0 were true. This provides strong evidence 
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against H
0

• In such instances, results are said to be significant at the 0.001 level, indi­
cating that getting a result of this size might occur only 1 out of 1,000 times. 

The alpha level for a statistical test, usually chosen before analyzing data, 
reflects how careful the researcher wishes to be. The smaller the alpha level, the 
stronger the evidence 1nust be to reject H0 . 

In older studies, hypotheses were usually stated in null form; however, this is 
not done as often today. When you hypothesize, you state that you believe there is 
a difference or a relationship between the variables of interest (nondirectional rela­
tionship). It is stronger if you state what differences or relationships you expect 
(directional relationship), rather than write a string of null hypotheses. 

It is important to understand the null hypothesis. however, because without it, 

there is no significance test. Suppose you stated that there is no significant difference 
between breast-fed and bottle-fed babies in terms of weight gain. If you really had no 
idea about this issue, it is more common not to state a hypothesis but simply to ask the 
research question: Is there a difference in weight gain between breast-fed and bottle­
fed babies' Even though there is no explicit hypothesis, the null hypothesis (of no dif­
ference in weight gain between breast-fed and bottle-fed babies) is implied. If you had 
rationale for a hypothesis, you might state a directional research hypothesis (H,) such 
as: Breast-fed babies gain more weight in the first week of life than bottle-fed babies. 

Testing a Statistical Hypothesis 
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Statistical hypotheses are assumed to be true or false. When we use inferential sta- .,. 
tistics, we make a decision within a certain margin of error about whether to accept 
(Ha is true) or reject (H0 is false) the statistical hypothesis. By using the sampling dis­
tribution of the test statistic, we compute the probability, labeled p, that the values 
of the statistic like the one observed would occur if H0 were true. 

Testing a statistical hypothesis involves several sequential steps (Glass & 
Hopkins, 1996; Henkel, 1986): 

Power of a Test 

Step 1. State the statistical hypothesis to be tested; for exa_mple, H0 : popula­
tion mean = 50. 

Step 2. Choose the appropriate statistic to test H0 . 

Step 3. Define the degree of risk of incorrectly concluding that H0 is false 
when it is true (type I error). This risk, commonly called alpha, is stated as 
the probability of a type I error (discussed in the next section). Unless 
otherwise indicated, alpha :5 0.05. 

Step 4. Calculate the statistic from a set of randomly sampled observations. 
Step 5. Decide whether to reject H0 on the basis of the sample statistic. For 

example, if p from Step 3 :5 0.05, H0 is rejected and we conclude the popu­
lation mean is not 50. If p > 0.05, H0 is not rejected and we conclude the 
population mean = 50. 

The power of a test is the probability of detecting a difference or relationship if such 
a difference or relationship really exists. Anything that decreases the probability of 
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a type II error increases power, and vice versa (Vaughan, 1998). A more powerful 
test is one ¢.at is more likely to reject H0 ; that is, it is more Hkely to indicate a sta­
tistically significant result when such a difference or relationship exists in the popu­
lation. The level of significance (probability level) and the power of the test are 
important factors to consider. 

One-Tailed and Two-Tailed Tests 

The "tails" refer to the ends of the normal curve. When we test for statistical signif­
icance, we want to know whether the difference or relationship is so extreme, so 
far out in the tail of the distribution, that it is unlikely to have occurred by chance 
alone. When we hypothesize the direction of the difference or relationship, we 
state in which tail of the distribution we expect to find the difference or relation­
ship. 

Although there is controversy about this, the practice among many researchers 
is to use a one-tailed test of significance when a directional hypothesis is stated and 
a two-tailed test in all other situations. The advantage of using the one-tailed test is 
that it is more powerful, because the value yielded by the statistical test does not 
have to be so large to be significant at a given p level. To gain this advantage, how­
ever, you must have a sound theoretical basis for the directional hypothesis; you 
cannot base it on a hunch. 

The normal curve is used to demonstrate the difference between one-tailed and 
· two-tailed tests (Fig. 3-3). Recall from our discussion of the normal curve that 95% 

of the distribution falls between ± 1.96 SO from the mean. Thus, only 5% falls 
beyond these two points: 2.5% of the distribution falls below a z-score of -1.96, and 

-2.58 , .. +1.96 
+2.58 

FIGURE 3-3. Two-tailed test of significance using the normal curve. 
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+1.85 

••• +2.33 

FIGURE 3~4. One-tailed test of significance using the normal curve. 

2.5% falls above + 1.96z. To be so "rare" as to occur only 5% of the time, a z-score 
would have to be -I.96z or less or + 1.96z or greater. Note that we are using both 
tails of the distribution. Because 99% of the distribution falls between ±2.58 SO from 
the mean of the normal curve, a score would have to be -2.58 or less or + 2.58 or 
more to be declared significant at the 0.01 level. 

Figure 3-4 shows what occurs when a directional hypothesis is stated. We 
examine only one tail of the distribution. In this example, we look at the positive 
side of the distribution. Fifty percent of the distribution falls below the mean and 
45% falls between the mean and a z-score of +1.65 (see Appendix A). Thus, 95% 
(50 + 45) of the distribution falls below + 1.65z. To score in the upper 5% would 
require a score of + 1.65 or greater. Given a one-tailed test of significance, you · 
would need a score of + 1.65z to be significant at the 0.05 level, whereas with a 
two-tailed test, you needed a score of ± 1.96z. This is an example of the concept of 
power. With an a priori directional hypothesis, a lower z-score would be consid­
ered significant. 

For the 0.01 level of significance and a one-tailed test, a z-score of +2.33 or 
greater is needed for significance. This is because 49"A> of the distribution falls 
between the mean and + 2.33, and another 50% falls below the mean. 

Degrees of Freedom 

The effects of degrees of freedom (d./) were included in the discussion of the 
denominator in the computation of the SO. In the sample formula, the denomina­
tor is n - I, thus correcting for the possible underestimation of the population 

r : 
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parameter. When describing the calculation of various statistics, we discuss divid­
ing by the df and looking up levels of significance in tables using dft. Because this 
is sometimes a confusing concept, a simple example follows. 

Degrees of freedom are related to the number of scores, items, or other units in 
a dataset and to the idea of freedom to .vary. Given three scores (1, 5, 6), we have 
three degrees of freedom, one for each independent item. Each score is free to vary; 
that is, before collecting the data, we do not know what any of these scores will be. 
Once we calculate the mean, however, we lose one df The mean of these. three 
scores is four. Once you know the mean and two of the three scores, you can fig­
ure out what the third score is; it is no longer free to vary. In calculating the vari­
ance or SO, you are calculating how much the scores vary around the sample mean. 
Because the sample mean is known, one df is lost, and the dft become n - 1, the 
number of items in the set less one. 

Confidence Intervals 

When the means (point estimates) are normally distributed, we c.a!l.Use _the stap­
dard errorof _th., _mean to calculate intery:al estimates. Typically, the 95% and 99% 
intervals are used. Recall that 95% of the curve is contained between ± 1.96 SD 
from the mean, and that 99"Al of the curve is contained between ± 2.58 SO from the 
mean. The term confidence interoal (Cl) refe.~_JQ .th., ... 9.egree __ of .. con[!$!.".Q!'e, J 

···- expressed as a percent, that the interval conta~s the population m!'an (or pr6por­
t!_onLagcifor wh~ch W!" have '!n esti.rru!te calcula_ted from .our sample data (Newton 

~ & Rudestam, 1999). 
The following formulas are used to calculate the Cis for the population means 

when the sample size is adequate (generally greater than 30). (For small samples, 
the t distribution may be used to calculate Cis.) ----·--·----

.~. 95% = M ± 1.96 Gtandard error) -] 
/ 99"Al =. M ± 2.58 (standard error) . 

• The following hypothetical examples are designed to illustrate point estimates 
and CI esti.rru!tes derived from a random sample. Suppose that a random sample of 
81 newborn infants from a hospital in a poor neighborhood during the last year had 
a mean birth weight of 100 oz, with an SO of 27 oz. 

1. What is the point estimate for the unknown true value of the average (mean) 
birth weight of all infants born in that hospital in the last year (called the popu­
lation parameter)? 

Answer: The mean value of 100 oz (computed from the 81 observations) is 
the best single number estimate (the point estimate) of the unknown value 
(parameter) for the population of interest. Another random sample of 81 would 
have given a sample mean different from 100 oz, so the mean value depends 
on the particular sample that was taken. The difference between the sample 
mean of 100 oz and the unknown population mean (which it estimates) is the 
sampling error. 
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Because the point estimate, 100 oz, is a single number, it gives no indica­
tion of its sampling error. Cis computed from random samples enable us to 
measure sampling error in numeric terms. 

2. What is the value of the 95% CI estimate for mean birth weight? 
Answer. First, we must calculate the standard error using the following 

formula: 

SD/Vn 

For our example, this is: 

27/\181 = 27/9 = 3 

Next, we calculate the 95% Cl: 

X ± 1.96 (standard error) 
100 ± (1.96) (3) 
100 ± 5.88 
94.12 and 105.88 

The 95% CI ranges from 94.12 to 105.88. It is a range or interval of esti­
mates for the unknown true value. Thus, a CI consists of an entire interval of 
estimates for the population parameter. 

3. How do we interpret the 95% CI? 
Answer. First, another sample of 81 would almost surely yield a different 

point estimate. The width of the 95% CI reflects the sampling €rror resulting 
from using an estimate based on a random sample of 8:i rather!~ the entire 
population. In other words, the width of the 95% CI indicates the range of vari­
ation for point estimates that may be expected by chance differences from" one 
raiioom.sample .;f the hospital J>Opulation to another. It is a 95% CI becaus-e 
about 95% of such Cis (obtained from different random samples of that size) 
will include the true mean value of hospital birth weights. Because that parame­
ter value is usually uilkflO~n. we use statistical ~stim;:~~-~-~-'-.!he point estimate 
and the CI estimate, to approximitte it. However, if the parameter value (the 
true mean birth weight for all newborn infants born in that hospital during the 
last year) were known, approximatdy 95% of the 95% Cis computed from dif­
ferent random samples of 81 would include that true value. 

The value of the point estimate and the CI estimate depends on the birth 
weights in the particular sample that was taken, and the estimates will vary 
from sample to sample. Therefore, we may not conclude that the probability is 
~~.!bat the mean hospital birth weight is between 94 and 106 oz. 

Either the parameter (the mean of all birth weights in the hospital during 
2002) is between 94 and 106 oz "or it is not; we do not know which. 'I]le 25Yo 
denotes the typical accuJ1!<;y in computing the varying Cis, and not the one CI 
calculated (Hahn & Meeker, 1991).'However, the width of the CI provide;;-;:;se­
ful irifoiiiiaiiori about the sa111pling error or uncertainty of the point estimate 
unavailable from the point;;si.imate itself. To interpret the specific Cl we com­
puted from our samp1e (liere; 95% CI, 94.12 to 105.88), it is necessary to under­
stand the relationship between Cis and significance tests. 
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Relationship between Confidence Intervals 
and Significance Tests 
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To help explain the relationship between Cis and the levels of significance (p val­
ues) derived from statistical tests, the following four questions might be asked in 
relation to our sample mean: 

1. Is the mean birth weight in this hospital sample (100 oz) statistically signifi­
cantly different from~ (5.5 lb, the definition of low birth weight)? 

2. Is the mean birth weight in this sample statistically significantly different from 
106 Q?' (6.6 lb, the mean birth J,Veig!J.t in thatcity)? -

. C... 3. "IS"the mean birth weight in this sample statistically significantly different from a 
'-· ·' birth weight of 103 oz? 

4. Is the mean birth weight in this sample statistically significantly different from 
100 oz, the sample estimat('! i!Se!f? 

To test the null hypothesis that there is no statistically significant difference 
between the mean of 100 oz and each of the other values, we apply the t test. The 
results follow: 

Question Null Hypothesis Difference between Values p Value 

1 !~. '. 12oz 0.0006 -88 
L:· " 

2 106 6 oz 0.0456 
3 103 3 oz 0.3174 
4 ~QQ .. '"/ Ooz (:;:;·. 

.... , .. 1.0000 

For the first question, H., is rejected. The observed mean of 100 oz is statistically 
significantly higher than the hypothesized value of 88 oz; that is, the 12-oz differ­
ence is a significant difference. The p value indicates that a difference that large 
would occur by chance alone only 6 times in 10,000. H0 is also rejected for ques­
tion 2; that is, the hospital mean of 100 oz is statistically significantly lower than the 
city mean of 106 oz. A difference that large would occur by chance alone only 4.6 
times in 100 random samples of equal size. For questions 3 and 4, H0 is not 
rejected; that is, the observed mean of 100 oz is not statistically significantly differ­
ent from the values of 103 or 100 oz. In the case of the 3-oz difference (question 
3), if there really was no difference between the population means, a difference at 
least that large could be expected to occur by chance in 32% of the random sam­
ples. In question 4, the point estimate and H0 are numerically indistinguishable 
(both 100 oz) and also statistically indistinguishable (p = 1.0), because the differ­
ence between the two values being compared is zero. 

From the chart of the p values, you can see that the further a particular H0 is from 
the point estimate (100 oz), the lower the p value. In other words, hypotheses 
become less compatible with the mean of the observed values (here, 100 oz), the 
larger the difference between the point estimate and the hypothesized or comparison 
score becomes. 
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(94.12 X 105.88) 

88 91 94 97 100 103 106 

H., H.. H.,. Hoo 

FIGURE 3~5. Relationship of confidence intervals to hypothesis testing. 

Figure 3-5 summarizes our results. The null hypotheses are numbered and indi­
cated by H,. For example, our first H0 compared our mean of 100 with a value of 
88. The CI of 94.12 to 105.88 is included in the figure. 

What can be said about the p values for the null hypotheses that fall outside the 
95% CI? The two that fall outside of the CI are 88 and 1o6 from questions 1 '!nsl 2, 
and in both cases the p was less than 0.05. Notice that the second null hypothesis of 
106 is just outside the 95% CI, and its p value is barely below 0.05. If H. falls at either 
end of a 95% CI, p = 0.05. 

Because all numbers outside of the CI have p values less than 0.05, we would 
expect that all numbers within the CI would have p values greater thlm 0.05. This 
leads to a characterization of a 95% CI in terms of p values. A 95% CI contains all the 
(H.) values for which p ;;, 0.05. In other words, a 95% CI contains. values Chypoth~.l_ 

-· ... -\-that are statistically compatible (will not be rejected at the (i.05 level) with the ppint 
estimate (observed value). - - . 

Consistency Checks for Evaluating Research Reports 

The relationships between point estimates, CI estimates, and significance tests make 
it possible to uncover inconsistencies in research reports. The point estimate cannot 
be outside of the CI. A value for H0 within the 95% CI should have a p value greater 
than 0.05, and one outside of the 95% CI should have a p value less than 0.05. 

Value of Confidence Intervals 

Levels of significance (p values) determine whether a particular hypothesis is statis­
tically compatible with the observed sample value, whereas 95% Cis specify all the 
population values that are statistically indistinguishable from the observed sample 
value. Smithson (2003) states that confidence intervals seem clearly superior to the 
traditional significance testing approach because they display the entire range of 
hypothetical values of a parameter that cannot be rejected compared to the signifi­
cance test that focuses solely on one null hypothesis value. In addition, confidence 
intervals help researchers move toward cumulative knowledge because they 
enhance comparisons between research replications. 

A Word of Caution 

Statistical tests and statistical estimates assume random sampling. When using either 
significance tests or Cis, clear-cut conclusions regarding the 'entire population apply 
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only when the study sample is a random sample of that population. Because study 
patients are rarely random samples from a population, we should be wary about 
making statistical inferences. If the sample appears to represent some population 
(but not a random sample), the width of the CI is often viewed as a lower bound 
(minimum) for the uncertainty in the point estimate. However, clinical judgment 
must supplement statistical analysis whenever nonrandom samples are used to gen­
eralize to individuals not studied (Riegelman, 1981). 

When reading a research report, it is essential to determine whether there is an 
explicitly defined population of interest and whether and how the study sample was 
selected. Although a representative (nonrandom) sample from an explicitly defined 
population falls short of a .random sample, it is superior to a nonrepresencative sam­
ple or to a situation in which the population or the study sample is not clearly 
defined. When inferences about the population are drawn using statistical tests or 
Cis in such situations, the reader should beware. Descriptions of the study sample 
(eg, using point estimates) provide useful information in all situations. When the 
population is ill defined, the study sample is unrepresentative, or the relation of the 
study sample to the population is unclear, point estimates and other statistics 
describing the sample may provide the only reliable information. 

Statistical Significance Versus Meaningful Significance 

A conunon mistake in research is to confuse statistical significance with substantive 
meaningfulness (Ingelfinger et al., 1994; Pedhazur & Schmelkin, 1991). A statistically 
significant result simply means that if H0 were true, the observed results would be 
very unusual. Given a sufficiently large sample (eg, n ;,: 100), even the tiniest rela­
tionship can be statistically significant (Knapp, 1998; Piantadosi, 1997). Statistically 
signifiCant results tell you nothing about the clinical importance or meaningful sig­
nificance of the results. 

The major task facing the health care researcher is not determining how statisti­
cally significant results are, but how meaningful, or substantively important, they 
are. Because statistical programs are widespread, readily accessible, and easy to use, 
it is simple to perform tests of statistical significance for various hypotheses. In con­
trast, it requires a good deal of knowledge and critical thinking skills to determine 
whether a finding is substantively meaningful. Perhaps this is why researchers still 
do not refrain from statistical "sanctification" of data (Pedhazur & Scbmelkin, 1991; 
Tukey, 1969), despite numerous writings to this effect. 

SAMPlE SIZE DETERMINATION 

When planning research, the question always arises as to how large a sample is 
needed. Determining sample size involves ethical and statistical considerations. If the 
sample size is too small to detect significant differences or relationships or includes far 
more subjects than necessary, the cost to subjects and researchers cannot be justified. 

In this section, the basic elements of sample size are addressed as they relate to 
the specific statistics covered in the rest of this book. Jacob Cohen (1988) made a 



100 

SUMMARY 

SECTION I Understanding the Data 

major contribution to sample size determination. His book provides tables that help 
us determine the appropriate sample size for a particular statistical test. 

Determining the right sample size for a specific study depends on several factors: 
power, effect size, and significance level. Power is defined as the likelihood of reject­
ing H

0 
(ie, avoiding a type II error). An 80% level is generally viewed as an adequate 

level. Effect size is the degree to which H 0 is false; that is, the magnitude of the effect 
of an independent variable on the dependent variable. This magnitude must be 
known or estimated in order to determine the minimum sample size needed to 
achieve a statistical analysis with a power ;,:.80. For example, in the absence of actual 
knowledge, for the t test, which compares the means of two groups, Cohen (1988) 
defines a small effect as 0.2 of an SO, a moderate effect as 0.5 SD, and a large effect 
as 0.8 SO. In relation to GRE scores with an SO of 100, a small effect would be 20 
points (loo· X 0.2), a moderate effect 50 points, and a large effect 80 points. The sig­
nificance level is the probability of rejecting a true H0 (making a type I error); it is 
called alpha and is often set at 0.05. 

Given three of these parameters, the fourth can be determined. Cohen's book 
has both power and sample size tables for most statistical procedures. If we know 
the sample size, effect size, and significance level, we can determine the poWer 
of the analysis. This can be particularly helpful when critiquing research because 
nonsignificant results may be related to an inadequate sample size, and signifi­
cant results may be related to a very large sample rather than to a meaningful 
result. 

When planning a study, the desired power, acceptable significance level, and 
expected effect size are determined, and these three parameters are used to deter­
mine the necessary sample size. In addition to Cohen's book, there are many other 
resources to help you determine appropriate sample sizes for different types of stud­
ies and related statistical techniques. These include books by Kraemer and Thiemann 
(1987), Maxwell and Delaney (1990), and Murphy and Myers (1998). There are also 
several stand-alone software programs that can be purchased. These include: Power 
and Precision, developed by Borenstein, Rothstein, and Cohen (1997) and also mar­
keted as SamplePower, 2.0 (SPSS, 2002), and PASS (NCSS, 2002). 

There are also many Web-based applications available to assist you with deter­
mining sample size. An excellent source of these websites is found at hnJ;!;LL 
members.aol com/johnp?lljavastat.html. Another quick way to locate these web­
sites is to use your favorite search engine, such as Google (http://www.google.com) 
and type in the terms "power analysis websites." Then, visit the found websites until 
you find the one calculator that will be most useful in calculating power or sample 
size. You will find discussions about power and sample size issues relevant to spe­
cific statistical tests in subsequent chapters. 

Topics covered in this chapter are basic to understanding the use of the specific sta­
tistical techniques contained in subsequent chapters of this book. Please be sure you 
understand these topics before proceeding. 
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Application Exercises and Results 

Exercises 

1. Scores on a particular test are normally distributed with a mean of 70 and an SD of 15. 
Between what two scores would you expect 

a. 6SOAl of the scores to f<ill be£Ween: __ · and _. _? 

b. 96% of the scores to fall becween: __ and __ ? 

2. In a positively skewed distribution, 'the "tail" extends toward the __ (right/left) or 
toward __ (higher/lower) scores of the distribution. 

3. When raw scores are converted to standard scores, the resulting distribution has a mean 
equal to __ and an SO equal to __ 

4. A distribution of scores has a mean of 70 and an SD of 5. The following four scores were 
drawn from that distribution' 58, 65, 73, and 82. 

a. Transform the raw scores to standard scores and T-scores. 

b. Calculate the percentile for each score. 

c. Use the standard scores that you have calculated for the four scores, and transform 
them into scores from a distribution with a mean of 100 and an SD of 25. 

5. Look at your frequencies for the variables AGE and EDUC. Determine whether the vari­
ables are significantly skewed. If they are skewed, perform the appropriate transforma­
tions and then run descriptives on the new variables to determine whether the transfor­
mations were successful. 

6. At your hospital, there were 1,500 deliveries last year; 364- of Ute women had cesarean 
sections. What is the probability of having a cesarean section at your hospital? 

7. You are testing for significant differences between the mean scores of two groups. You 
set the level of significance at 0.05. 1f the mean difference is so large that it would occur 
by chance 1% of the time, would you accept or reject the null hypothesis? 

8. When you make a prediction about the direction of mean differences between an 
experimental and a control group, would you use a one-tailed or a two-tailed test of 
significance? 

9. Which is the more powerful test, one tailed or two tailed? 

10. You hypothesize that there is no significant difference in weight between infants in new­
born nursery A and those in newborn nursery B. In each of the following, determine 
whether an error has been made and, if so, what type of error. 

a. Infants in newborn nursery A really weigh significantly more than infants in newborn 
nursery B, and you accept the null hypothesis. 

b. Infants in newborn nursery B realJy weigh more than infants in newborn nursery A, 
and you reject the null hypothesis. 

c. Infants in both newborn nurseries really do weigh the same, and you accept the null 
hypothesis. 

d. Infants in both newb9rn nurseries really do weigh lhe same, and you reject the null 
hypothesis. 

11. You have measured 120 subjects on a particular scale. The mean is 75 and the SD is 6. 

a. What is the standard error of the mean? 
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b. Set up the 95% confidence interval for the mean. 
c. Set up the 99% confidence interval for the mean. 

12. You are reading a review paper discussina the use of serum ferritin as a diagnostic test 
for iron deficiency anemia, with the results summarized as follows: 

Anemia Anemia 
Present Absent Tot.~/ 

Serum Ferritin + (Positive) 731 270 1001 

Test Result - (Negative) 78 1500 1578 

Total 809 1770 2579 

a. Calculate the sensitivity (Sn), specificity (Sp), positive predictive value (PPV), negative 
predictive value (NPV), and efficiency (EFF). 

b. Describe the clinical performance of the serum ferritin test as a diagnostic tool. 

Results 

1. With a mean of 70 and an SD of 15o 

a. 68% of scores ~- ~ 1 SD; therefore, 68% fall between 55 and 85. 

b. 96% of scores = ±2 SDi therefore, 96% fall between 40 and 100. 

2. In a positively skewed distribution, the tail is to the right or higher scores of the 
distribution. 

3. A standard score distribution has a mean of 0 and an SD of 1. 

4. a. Standard scores and T-scores 

RAw Score St<JnJard Score T-Score 

z~ (X- X/SD T ~ 10z +50 

58 z ~(58- 70)/5 ~ -2.4 T ~ (10)(-2.4) +50~ 26 

65 z ~ (65- 70)/5 ~ -1.0 T ~ (10)(-1.0) +50~ 40 

73 z ~ (73 - 70)/5 ~ 0.6 T ~ (10)(0.6) + 50 ~ 56 

82 z ~ (82 - 70)/5 ~ 2.4 T ~ (10)(2.4) + 50 ~ 74 . 

b. Percenti.les: Areas between mean and z-score (Appendix A) 

R4wScore z-Score Tabled Values Percentiles 

58 -2.4 49.18 50 - 49.18 ~ 0.82 

65 -1.0 34.13 50 - 34.13 ~ 15.87 
73 0.6 22.57 50 + 22.57 ~ 72.57 
82 2.4 49.18 50+ 49.18 ~ 99.18 
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c. New distribution: Transformed z-scores = (new SDXz) + (new X) 
= 25z+ 100 

z-Scores 

-2.4 

-1.0 

0.6 

2.4 

Transformed Scores 

25( -2.4) + 100 = 40 . 
25(-1.0)+ 100=75. 

25(0.6) + 100 = 115 

25(2.4) + 100 = 160 
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5. Here are the relevant values for the variables AGE and EDUC. To determine the degree 
of skewness using Fisher's measure of skewness formula, we divide the measure of skew­
ness by its standard error. Values greater than 1.96 are significant at the 0.05 level and val­
ues greater than 2.58 are significanc at the 0.01 leveL 

AGE = 0.753/0.093 = 8.096 = 8.10 
EDUC = 0.153/0.094 = 1.627 = 1.62 

The AGE variable is significantly skewed (p < 0.01), but the EDUC variable is not. 
Therefore, we can leave the EDUC variable alone, but we need to consider what method 
might be best to transform the AGE variable. We will use three methods for handling 
skewness that are recommended by Tabachnick and Fidell (2001). Each method requires 
us to create a new variable from lhe AGE variable. In the first method, we create the new 
variable, RECAGE, by using the Recode into a Different Variable approach, where we 
recode the outlier scores of 78, 79, 82, 83, and 95 to 75, 76, 77, 78, and 79, respectively, 
to make them closer to the bulk of scores in the distribution. In the second method, we 
use the Compute command to create a new variable, called SQRTAGE, which consists of 
the square root of every subject's age. In the third method, we again use the Compute 
command and create a new variable, called LGlOAGE, which is a log transformation of the 
AGE variable. Here are the commands that were used to create these three new variables: 

RECODE AGE (78=75)(79=76)(82=77)(83=78)(95=79)(ELSE=Copy)• INTO RECAGE. 
COMPUTE SQRTAGE = SQRT(AGE). 
COMPUTE LG10AGE = LG10(AGE). 
EXECUTE. 

(*If you don't use the ELSE command to bring over the rest of the scores in this type 
of Recode, the resulting variable will have only those scores that were created, in this 
case, an n = 6.) 
After creating the three new variables, we check to see what, if any, transformation 

had corrected the skewness. We do this by computing descriptive statistics for the new 
variables and then calculating Fisher's measure of skewness. 

RECAGE = 0.643/0.093 = 6.91 
SQRTAGE = 0.268/0.093 = 2.89 
LGIOAGE = -0.190/0.093 = -2.04 

Despite transformation, both RECAGE and SQRTAGE remained markedly skewed (p 
< 0.01). The log transformation, however, reduced r:he skewness level considerably but 
not less than the desired 1.96 SD unit level, indicating that the variable LGIOAGE was 
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almost normally transformed. Even though normal transformation was not achieved com­
pletely, we could use the log-transformed age variable LGlOAGE in subsequent analyses 
as long as the sample size is not too small. Skewness tends to be more influential in small 
samples. 

6. 100 X 364/1,500 ~ 24.3%. 

7. The researcher would reject Ho-
8. Use a one-tailed test of significance. 

9. A one-tailed lest is more powerful. 

10. a. Type II error 

b. No error made 

c. No error made 

d. Type I error 

II. a. Sx ~SO/square root of n 
~ 6/square root of 120 
~ 6/10.95 ~ 0.547 ~ 0.55 

b. 95% ~ X :!: 1.96 s, 

~ 75 :!: (1.96)(0.55) 
~ 75 :!: 1.08 
~ 73.92 to 76.08 

c. 99"10 ~ X :!: 2. 58 s, 

~ 75 :!: (2.58)(0.55) 
~ 75 :!: 1.42 
~ 73.58 to 76.42 

12. a. The sensitivity is calculated as follows: 

Sn ~ (TP/(TP + FN)) X 100 
~ (7311(731 + 78)) X 100 
~ 731/809 X 100 
~ 90.4% or 90% 

The specificity is calculated as follows: 

Sp ~ (TN/(TN + FP)) X 100 
~ (15001(1500 + 270)) X 100 
~ 1500/1770 X 100 
~ 84.7% or 85% 

Positive predictive value is calculated as follows: 

PPV ~ (TP/(TP + FP)) X 100 
~ (731/(731 + 270)) X 100 
~ 731/1001 X 100 
~ 73.0% 

Negative predictive value is calculated as foJlows: 

NPV ~ (TN/(TN + FN)) X 100 
~ (15001(1500 + 78)) X 100 
~ 150011578 X 100 
~ 95.1% or 95% 

. : 
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Efficiency is calculated as follows: 

Eff ~ ((TP + TN)!(TP + TN + FP + FN)) X 100 
~ ((731 + 1500)/(731 + 1500 + 270 + 78)) X 100 
~ 223112579 X 100 
~ 86.5% or 86% 

105 

b. These results indicate that 90% of patients with iron deficiency anemia have a positive 
serum ferritin level test result (Sn), and 85% of patients who do not have the disorder 
test negative (Sp). Only 27 out of every 100 patients tested will be incorrectly diag­
nosed with the disorder (PPV) and only 5 out of every 100 patients will be incorrecdy 
classified as not having lhe disorder when they in fact do have iron deficiency anemia 
(NPV). The serum ferritin level test is 86% accurate (EFF) in diagnosing patients with 
iron deficiency anemia. 
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' Selected Nonparametric 

Techniques 

Barbara Hazard Munro 

Objectives for: Chapter 4 

After reading this chapter, you should be able to do the following: 

1. Identify situations in which the use of non parametric techniques is appropriate. 
2. Interpret computer printouts containing specified non parametric analyses. 
3. Relate the results of the analysis to the research question posed. 

RESEARCH QUESTION 

Nonparametric tests can be used to answer research questions ranging from 
whether a relationship exists between two variables to whether groups differ on 
an outcome measure. The focus of this chapter is on comparing groups of subjects 
on outcome measures. The nonparametric techniques to be covered in this chap­
ter are listed in Table 4-1. This chapter is intended to discuss only the commonly 
used nonparametrics. The parametric analogs covered in later chapters also arc 
included. 

TYPE OF DATA REQUIRED 

Parametric Versus Nonparametric Tests 

When we use parametric tests of significance, we are estimating at least one popu­
lation parameter from our sample statistics. To be able to make such an estimation, 
we must make certain assumptions; the most important one is that the variable we 
have measured in the sample is normally distributed in the population to which we 
plan to generalize our findings. With nonparametric tests, there is no assumption 

109 
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I TABLE 4-1 Nonpammetnc Tests and Co1 respond1ng Parametnc Analogs 

Nonparametric Tests 

Nominal Data. Ordinal Datii Parametric Analog 

One-group case 

Two-group case~ l 
k-gro\lpcase 
Dependent gioups 

Chi-square ~~ess of fit 
Chi-square·~! 
Chi-square;-
McNemar test· for significance 

of change 

Mann-\l(thitne)' \) 
K;;;sk,;i:\V;:ms H 

'Wik~;~~ matCh.ed-pairs 

t test 

One-way ANOVA 
Paired t tests 
Repeated measures (repeated measures) signed rank test 

Friedman matched 
samples 

ANOVA 

about the distribution of the variable in the population. For that reason, nonpara­
metric tests often are called distribution free. 

At one time, level of measurement was considered a critical element in df'ciding 
whether to use parametric or nonparametric tests. It was believed that parametric 
tests should be reserved for use with interval- and ratio-level data. However, it has 
been shown that the use of parametric techniques with ordinal data rarely distorts 
the results. 

Parametric techniques have several advantages. Other things being equal, they 
are more powerful and more flexible than nonparametric techniques. They not only 
allow the researcher to study the effect of many independent variables on the 
dependent variable, but they also make possible the study of their interaction. Non­
parametric techniques are much easier to calculate by hand than parametric tech­
niques, but that advantage has been eliminated by the use of computers. Small sam­
ples and serious distortions of the data should lead one to explore nonparametric 
techniques. As discussed in Chapter 2, when the data are significantly skewed, thus 
failing the assumption of normal distribution, one might transform them to achieve 
a norma! distribution. Rather than transform such variables, nonparametric tech­
niques might be used. There are no clear rules for when one approach is preferred. 
An advantage of the nonparametric approach is that the data retain their original val­
ues, thus making interpretation easier. A disadvantage of nonparametrics is their 
inability to handle multivariate questions. 

CHI-SQUARE 

Research Question 

Chi-square is the most commonly reported nonparametric statistic. It can be used 
with one or more groups. It compares the actual number (or frequency) in each 
group with the expected number. The expected number can be based on theoty, 
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experience, or comparison groups. The question is whether the expected number 
differs significantly from the actual number. 

Type of Data Required 

Chi-square is used when the data are nominal (categorical). In later chapters we dis­
cuss how the chi-square is used to test the fit of models in techniques such as logis­
tic regression and path analysis. 

Youngblut and colleagues (2001) compared family characteristics for their two 
groups of subjects, preterm and full-term deliveries. They used t tests to compare the 
groups on continuous variables and cl:li-square to compare them on categorical vari­
ables. Table 4-2 describes their results. They used an asterisk to indicate significant 
results. As you can see, none of the chi-square Cf) results are significant. The two 
groups (preterm and full term) did not differ on mother's race, mother's education, 
family income, mother's employment status, or child's sex. There were differences 
between the two groups. For example, 98".4> of the full-term group had family 
incomes of less than $20,000, whereas only 85% of the preterm group was in that 
category. This difference, however, was not greater than could occur by chance 
alone. 

Assumptions Underlying Chi-Square 

There are four assumptions underlying the chi-square: 

I. Frequency data 
2. Adequate sample size 
3. Measures independent of each other 
4. Theoretical basis for the categorization of the variables 

The first assumption is that the data are frequency data, that is, a count of the 
number of subjects in each condition under analysis. The chi-square cannot be used 
to analyze the difference between scores or their means. If data are not categorical, 
they must be categorized before being used. Whether to categorize depends on the 
data and the question to be answered. 

If the data are not normally distributed and violate the assumptions underlying the 
appropriate parametric technique, then categorization might be appropriate. The cate­
gories developed must adequately represent the data and must be based on sound 
rationale. If you had the ages of subjects, you could categorize them as 20 to 29, 30 to 
39, and 40 to 49. However, you have treated all people within one of your three cate­
gories as being equal in age. Does a 29-year-old belong in the same group as a 20-year­
old, or is he or she more like a 30-year -<>ld? Specificity and variability are decreased 
through this categorization, and as a result the analysis will be less powerful. 

The question addressed affects the categorization of subjects. Suppose the 
researcher was interested in whether being in school affects some categorical out­
come measure. Then grouping the children as preschool and in school would make 
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I TABLE 4-2 Compauson ofFamiltes wtth Preterm and Fti/1 Term Pwschoofe,-, 

Characteristic Preterm M (SD) Full-Term M (SD) 

Mother's age 29.90 (6.86) 29.20 (6.17) 

Proportion child's life employed .27 (.37) .22 (.32) 

Discrepancy 20.80 (12.94) 21.00 (14.59) 

Number of children 2.50 (1.55) 2.50 (1.34) 

Child's age (months) 48.70 (9.92) 48.40 (9.96) 

Birth weight (grams) 1444.10 (527.21) 3331.30 (514.18) 

Gestational age at birth (weeks) 30.50 (3.17) 39.60 (1.6o) 

Proportion child's life single .89 (.26) .88 (.24) 

Mother's race N (%) N (%) 

White 16 (13%) 23 (19%) 

Black 44 (36%) 36 (30"Al) 

Hispanic 0 (O"Al) 2 (2%) 

Mother's education 

<High school 12 (10%) 16 (13%) 

High school grad 20 (Hi%) 22 (18%) 

>High school 28 (23%) 23 (19%) 

Family income 

<$20,000 51 (85%) 60 (98%) 

$20,000-39,999 6 (10%) 1 (2%) 

;;;:$40,000 3 (5%) 0 (0%) 

Mother's employment status 

Employed 17 (14%) 17 (14%) 

Nonemployed 43 (35%) 44 (36%) 

Child's sex 

Female 32 (26%) 25 (21%) 

Male 28 (23%) 36 (30"Al) 

•p < .01. 

Statistic 

I- .58 

I~ .78 

I~ .08 

I~ .13 
t ~ .18 

I~ 19-93• 

I~ 19.984 

I~ .23 

x' ~ 4.05 

x' ~ 1.15 

x' ~ 5.23 

x' ~ .003 

x' ~ 1.85 

From Youngblut,]. M., Brooten, D., Singer, L. T., Slaoding, T., Lee, H., and Rodgers, W. L. (2001). Effects of maternal employ­
ment and prematurity on child outcomes in single parent families. NUrsing Research, 50(6), 349. 

sense, rather than using their actual ages. When categories have clinical relevance, 
statistical analyses that preserve these categories are more likely to provide useful 
interpretations. They are less likely to provide "differences that do not make a dif­
ference." 

The second assumption is that the sample size is adequate. In cross-tabulation 
procedures, cells are formed by the combination of measures. None of the cells 
should be empty. Expected frequencies of less than live in 2 X 2 tables present 
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problems. In larger tables, many researchers use the rule of thumb that not more 
than 20% of the cells should have frequencies of less than five (SPSS, 1999b, p. 67). 
If the cells do not contain adequate numbers, then the variables should be restruc­
tured to have fewer categories. It is very important to look at the frequencies of vari­
ables before running analyses to ascertain whether adequate numbers of subjects 
exist. Even with that, however, low numbers in particular cells may not be obvious 
until the cross-tabulation is run. Most statistical programs print a warning when cell 
sizes are inadequate. If the cell sizes are problematic, then the researcher should 
consider restructuring the variable to have less categories. 

The third assumption is that the measures are independent of each other. This 
means that the categories created are mutually exclusive; that is, no subject can be 
in more than one cell in the design, and no subject can be used more than once. It 
also means that the resporu;e of one subject cannot influence the response of 
another. This seems relatively straightforward, but difficulties arise in clinical 
research situations when data are collected for a period of time. If you are testing 
subjects in a hospital or clinic, you must be sure that a person who is readmitted is 
not enrolled in the study for a second time. You also must be sure that subjects in 
one condition are not communicating with subjects in their own or different condi­
tions in such a way that responses are contaminated. 

The fourth assumption is that there is some theoretical reason for the cate­
gories. This ensures that the analysis will be meaningful and prevents "fishing expe­
ditions." The latter would occur if the researcher kept recategorizing subjects, hop­
ing to find some relationship between the variables. Research questions and 
methods for analysis are established before data collection. Although these may be 
modified to suit the data actually obtained, the basic theoretical structure remains. 

Power must be considered when planning sample size. If you have 40 subjects (10 
in each of the four cells in a 2 X 2 design), set your probability level at 0.05 and 
expect a moderate effect, your power is only 0.47 (Cohen, 1987, p. 235). You have 
less than a 50% chance of finding a significant relationship between the two vari­
ables. Under the same conditions, a sample of 80 results in a power of . 76, and a 
sample of 90 in a power of .81. After the description of the computer printout, an 
example of power is given. 

Example for Computer Analysis 

The research question is whether socioeconomic status (SES) is related to the abuse 
of women. The data were gathered in an AREA grant funded by NINR (Hawkins et al., 
1996). Another way to state the question is whether women with low SES differ from 
women with high SES in their reports of abuse. The researchers used insurance as 
one way of measuring SEs. They categorized the subjects into those who had pri­
vate irtsurance agairtst those who did not. They asked the women whether they had 
ever been emotionally or physically abused. Using the Hawkins et al. 0996) data 
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ever emotionally or physically abused • SES as risk factor Cross-tabulation 

Coun£ 

SES a:s risk factor 

Has Medicaid 
private mass health 

insurance or none Total 

Ever no 1,011 954 1,965 
emotionally or yes 104 294 398 
physically abused 
Total 1,115 1,248 2,363 

AGURE 4-1. Data for chi-square analysis. 

and the SPSS program Crosstabs, we produced Fig. 4-1. All figures associated with 
this analysis were produced by SPSS for Windows version 12.0. Some have been 
edited slightly. Author comments have been added and appear in shaded boxes. 

First, look at the totals for the columns (SES) and rows (abuse). Overall, there 
are 2,363 subjects, 1,115 with private insurance and 1,248 without private insurance. 
Fortunately, the group that reports being abused (n = 398) is much smaller than the 
group that reports no abuse (n = 1,965). Look closely at the figure. Do you think 
that SES as measured by insurance is related to abuse? The null hypothesis is that 
there is no difference between the two abuse groups in frequency of abuse. 

Because the subjects are not divided equally between those with or without 
insurance or between those who have been abused and those who have not, adding 
percentages to the table is helpful in clarifying the results (Fig. 4-2). This was done 
by requesting row, ealumn, and total percents. Requesting all of the possible per­
cents results in a "busy" table, so take a moment to get comfortable with the figure. 
Generally, for publication, one uses the independent variable as the column variable 
and the dependent variable (outcome measure) as the row variable. Then, just the 
column percents are enough to interpret the results. 

In each cell (box) the top number is the count, the second number is the row 
percent, the third is the column percent, and the bottom number is the total percent. 
Look at the top box on the left. The count is 1,011; that is 1,011 subjects had private 
insurance and said they had not ever been emotionally or physically abused. Abuse 
is the row variable. Here 51.5% (1,011/1,965) of those who had not been emotion­
ally or physically abused had private insurance. SES is the column variable. In this 
box we see that 90.7% of those who had private insurance said they had not been 
abused (1,011/1,115). The bottom number in the box indicates that of all the sub­
jects 42.8% had private insurance and had not been abused (1,011/2,363). 

Looking at the totals for the row variable, abuse (right-hand column), we see 
that 1,%5 or 83.2% of the women said they were never abused and 398 or 16.8% 
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ever emotionally or physically abused "' SES as risk factor Cross-tabulation 

SES as risk factor 

Has Medicaid 

private mass health 
insurance or none Total 

Ever no Count 1011 954 1965 
emotionally or % within ever 

physically abused emotionally or 51.5% 48.5% 100.0% 

physically 

abused 

% within SES as 90.7% 76.4% 83.2% 

risk factor 

o/o of Total 42.8"Al 40.4% 83.2% 

yes Count 104 294 398 
% within ever 

emotionally or 26.1% 73.9o/o 100.0% 

physically 

abused 

o/o within SES as 9.3% 23.6% 16.8"Al 

risk factor 

%of Total 4.4% 12.4% 16.8% 

Total Count 1115 1248 2363 

% within ever 

emotionally or 47.2% 52.8% 100.0% 

physically 

abused 

% within SES as 100.0% 100.0% 100.0% 

risk factor 

%of Total 47.2% 52.8% 100.0% 

FIGURE 4-2. Frequencies and all percents. 

-----·- ·------·-·· 
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ever emotionally or physically abused •sES as risk factor Cross-tabulation 

SFS as risk factor 

Has Medicaid 
private mass health 

insurance or none Total 

Ever no Count 1,011 954 1,965 
emotionally Expected 927.2 1037.8 1965.0 
or Count 

physically yes Count 104 294 398 
abused Expected 187.8 210.2 398.0 

Count 

Total Count 1,115 1,248 2,363 
Expected 1115.0 1248.0 2363.0 
Count 

FIGURE 4-3. Actual and expected frequencies. 

said they had been abused. The totals for the column variable, SES, show that 1,115 
women or 47.2% had private insurance and 1,248 or 52.8% did not. If abuse were 
not related to SES, then we would expect that for each level of SES, the rate of abuse 
would be the same. For the entire sample the rate of abuse is 16.8%. Thus, if there 
were no differences between the groups, we would expect that within each insur­
ance group, 16.8% would have been abused and 83.2o/o would not. 

These expectations become the expected frequencies in the calculation of the 
chi-square. For those with private insurance (n = 1,115), the expected frequencies 
would equal 187.32 for the abused group (1,115 X .168 = 187.32). For those with­
out private insurance, the expected frequencies for abuse would equal 209.664 
(1248 X .168 = 209.664). Figure 4-3 contains the actual (observed) and expected 
frequencies. The slight discrepancies come from rounding errors. Actually the per­
cent of those who were abused is 16.84304. If that number is used instead of 16.8, 
you will get the same expected counts as in Fig. 4-3. 

Compare the observed and expected frequencies. Given a rate of 16.8%, we 
"expect" that 188 (187.8) of those with private insurance would report abuse, but 
only 104 actually reported abuse. For those without private insurance, more women 
reported abuse (294) than expected (210). There is a difference in reported abuse 
between the two groups. In the insurance group, 9.3% report abuse, whereas in the 
no private insurance group, 23.6% report abuse (see Fig. 4-4). The statistical test tells 
us whether or not such a difference could have happened by chance alone. 

Computer Output for Chi-Square Analysis 

Figure 4-4 contains the computer printout of this analysis. Under chi-square tests, 
we see four different values, with their degrees of freedom (df) and significance 
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ever emotionally or physically abused • SES as risk factor Cross-tabulation 

SES as risk factor 

Has Medicaid 
private mass health 

insurance or none Total 

Ever no Count 1,011 954 1,965 
emotionally %within 
or SES as risk 90.7% 76.4% 83.2"A> 
physically factor 

abused yes Count 104 294 398 
%within 
SES as risk 9.3% 23.6% 16.8% 
factor 

Total Count 1,115 1,248 2,363 
%within 
SES as risk 100.0% IOO.Oo/o 100.0% 
factor 

Chi-Square Tests 

Asymp. Exact Exact 
sig. (2 sig. (2 sig. (2 

Value df sided) sided) sided) 

Pearson chi-
square 85.141(b) I .000 
Continuity 
correction (a) 84.128 I .000 
Likelihood ratio 88.671 I .000 
Fisher's exact test .000 .000 
linear-by-linear 85.105 I .000 
association 
N of valid cases 2363 

a Computed only for a 2 X 2 £able 
b 0 cells (.0%) have expected coum less than 5. The minimum expected count is 187.80. 

AGURE 4-4. Computer output of chi-square analysis. 
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Symmetric Measures 

Value Approx. sig. 

Nominal by Phi .190 .000 
nominal 

Cramer's V .190 .000 
Contingency .186 .000 
Coefficient 

N of valid cases 2,363 

Not assuming the null hypO(hesis. 
Using the asymptotic standard error assuming the null hypothesis. 

RGURE 4-4. (Continued) 

levels. The Pearson value is what you would get if you did this by hand using the 
usual formula. It is based on the differences between the observed and expected 
frequencies. For example, the actual (or observed) number of abused women 
with private insurance is 104, but the expected number (based on an overall rate 
of 16.8%) is 187.8. The difference between these two values is 83.8. The chi­
square value based on the differences between observed and expected frequen­
cies in each of the four cells in our design is 85.141. There is one df, and the sig­
nificance level is .000 (which is at least less than .001). Therefore, since the 
significance level is less than .05, we would say that the null hypothesis of no dif­
ference in abuse between the two insurance groups has not been supported. 
There is a significant difference between insured and uninsured women in their 
reported levels of abuse, with uninsured women reporting significantly more 
abuse. 

Since the differences were quite large, this is probably what you expected. 
In Chapter 3, the concept of degrees of freedom is defined as the extent to 

which values are free to vary given a specific number of subjects and a total score. 
In chi-square analysis, however, frequencies are used rather tho'!.n scores. The num­
ber of cells that are free to vary depends on the number of cells found in the table. 
How many cell frequencies would we need to know to derive the others? The 
answer to that question will be equal to the df Given the row and column totals, 
we only need to know one cell value in a 2 X 2 table ·to be able to calculate the 
rest by simple subtraction. Therefore, only one cell is free to vary; the others are 
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dependent on that value. The dffor a 2 X 2 chi-square analysis is always 1, regard­
less of sample size. The formula for calculating the df for any size table in a chi­
square analysis is: 

df= (r- 1)(c- 1) 

For our 2 X 2 table, this becomes df = (2 - 1)(2 - 1) = 1. 
The continuity correction is often referred to as the Yates' correction. Although 

nominal data are used to calculate a chi-square, chi-square values have a distribu­
tion (see Appendix B). The distribution is continuous, but when the expected fre­
quency in any of the cells in a 2 X 2 table is less than 5, the sampling distribution of 
chi-square for that analysis may depart substantially from normal (Hinkle, Wiersma, 
& Jurs, 1998, p. 590). In those cases, the continuity correction is recommended. The 
correction consists of subtracting .S from the difference between each pair of 
observed and expected frequencies. In our example, the difference of 83.8 would 
be reduced to 83.3 by subtracting .5, which results in an overall lower chi-square 
value. On the output we see that the Pearson value is 85.141, but with the continu­
ity correction, this drops to 84.128. Thus, applying the correction reduces the power 
of the analysis. 

In our example, the minimum expected count is 187.80; therefore, we would 
report the Pearson result. If the minimum expected count (or frequency) had been 
less than 5, the continuity correction value or Fisher's exact test should have been 
reported. 

The likelihood ratio chi-square is an alternative to the Pearson chi-square used 
for log-linear models. When the sample is large, the likelihood ratio is very similar 
to the Pearson (SPSS, 1999b). 

Fisher's exact test is an alternative to Pearson's chi-square for the 2 X 2 table. It 
assumes that the marginal counts remain fixed at the observed values and calculates 
exact probabilities of obtaining the observed results if the two variables are inde­
pendent (SPSS, 1999b). It is most useful when sample sizes and expected frequen­
cies are small. If the minimum expected value is less than 5, in a 2 X 2 table, Fisher's 
exact is more appropriate than Pearson's chi-square. 

The linear-by-linear association chi-square, although printed when chi-square 
is requested, is not always appropriate because it is based on the relationship 
between the two variables as measured by the Pearson correlation coefficient. The 
Pearson correlation coefficient assumes normally distributed data, and this is not 
usually the case with nominal data, especially with two dichotomous variables, as in 
a 2 X 2 table (SPSS, 1999b). 

Two measures are listed in the table in Figure 4-4 titled Symmetric Measures. 
They are Phi and Cramer's V. 

Phi is a shortcut used for calculating a correlation coefficient. It can be used 
when both variables are dichotomous (have only two levels). It is appropriate only 
when the chi-square value is significant. It is interpreted as a measure of association; 
that is, in this example, the correlation between these two variables is .190. It allows 
us to interpret the strength of the relationship. It is most useful with 2 X 2 tables in 
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I TABLE 4-3 Examples of Power 

Difference 
Insured Uninsured between Groups 

Null hypothesis 16.8"Al 16.8% 0% 

Actual effect 9.3o/o 23.6% 14.3% 

Small effect 10.0% 20.0% 10.0% 

Moderate effect 8.0% 38.0% 30.0% 

Large effect 5.0% 55.0% 50.0% 

which the values of phi range from 0 to 1. In tables with more cells, the value can 
be greater than 1, decreasing its usefulness. It is complementary to chi-square 
because it is less sensitive to sample size. It could be used to compare the strength 
of the relationship across studies. 

Cramer's Vis a slightly modified version that can be used with larger tables. Phi 
is adjusted for the number of rows and columns. Thus, given a significant chi­
square, report Phi for 2 X 2 tables and Cramer's V for larger tables. 

Example of Power Analysis 

Cohen 0987) defines the effect sizes related to the chi-square as small= 0.1, mod­
erate = 0.3, and large = 0.5. Using our example, what do these mean? Table 4-3 
demonstrates these effect sizes for our example. The null hypothesis in our exam­
ple is based on the fact that overall, 16.8'11> of the women reported abuse. Thus, if 
the null hypothesis is true, 16.8% of the insured and 16.8% of the uninsured will 
report abuse. Our actual effect was a 14.3% difference between the groups. By 
Cohen's definition, a small effect would be a 10% difference between the two 
groups, such as 10% of the insured women being abused versus 20% of the nonin­
sured. A moderate effect would be a 30% difference between the two groups, and a 
large effect would be a 50% difference. Look at the table to see examples of what 
those effects could look like. 

Example from the Literature 

Champion and colleagues (2001) compared genitourinary symptoms between 
abused and nonabused women. Table 4-4 contains the results. All of the compar­
isons are significant. Abused women reported significantly more vaginal discharge, 
abdominal pain, abnormal menses, and dyspareunia than did nonabused women. 
Look at the percentages, as well as the p values to see what the effects are. By 
Cohen's definition, the effects would be considered "small," since most are close 
to 10%. 
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I TABLE 4-4 Compmtsons ofGemtO['rfnaty Syrnptomatolo~, ,1( Abused 
and Nona bused Women 

Abused Nonabused 
Variable n = 194 n =418 

Vaginal discharge 71.6% 60.0% 

Abdominal pain 46.9% 38.00/o 
Abnormal menses 48.2% 36.4% 

Dyspareunia 21.1% 12.0% 

np values from comparisons of abused and nonabused groups using chi~square analysis. 
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,. 
<.01 

<.05 

<.01 

<.01 

From Champion,]. D., Piper,].. Shain, R. N., Perdue, S. T., & Newton, E. R. (2001). Minority women with 
sexually transmiued diseases; Sexual abuse and risk for pelvic inflammatory disease. Research in Nursing 
& Health, 24(1), p. 7:7. 

Calculation of Chi-Square 

When calculating chi-square, the expected and obseiVed frequencies in each cell are 
compared. Using the expected and obseiVed frequencies in Fig. 4-3, we demonstrate 
the use of the chi-square formula. In each cell the expected frequency is subtracted 
from the obseiVed frequency, and that result is squared and then divided through by 
the expected frequency. The sum of these calculations is the chi-square. 

Chi-Square Formula 

L (1ou - 927.2)' + (954 - 1037.s)' 

927.2 1037.8 

(104 - 187.8)2 (294 - 210.2)2 

+ 187.8 + 210.2 = 85 '141 

Summary for Chi-Square 

Chi-square is the appropriate technique when ·variables are measured al the nomi­
nallevel. It may be used with one or more groups. In the one-group case compari­
son, data may be provided from a theoretical perspective, norms, or past experi­
ence. Suppose a hospital had a cesarean section rate of 30%. This percentage could 
be compared with reponed rates (locally, regionally, or nationally) through the use 
of chi-square. 

Although only a 2 X. 2 design has been used as an example, this two-group case 
with two levels in each group can be extended to larger designs. The groups in a 
chi-square analysis must be mutually exclusive. However, an adaptation of chi­
square is the McNemar test for use with repeated measures at the nominal level. 
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McNemar Test 

lumps pretest & lumps posttest 

Lumps Lumps posttest 
pretest 0 

0 199 
I 15 

Test Statistics (b) 

N 
Chi~square (a) 
Asymp. Sig. 

a Continuity Corrected 
b McNemar Test 

I 

100 
112 

Lumps 
pretest & 

lumps 
posttest 

426 
6!.357 

.000 

FIGURE 4·5. Computer output of McNemar test. 

NOMINAL-LEVEL DATA, DEPENDENT MEASURES 

The McNemar test can be used with two dichotomous measures on the same sub­
jects. It is used to measure change. Figure 4-5 contains an example of a computer 
printout produced by SPSS for Windows, using data collected by Wood (1997). In 
this example, we are interested in subjects' ability to identify lumps in models of 
breasts before and after training. There were 8 lumps in the model. Those who 
detected 0-3 lumps were scored 0, and those who detected 4-8 lumps were scored 
1. Looking at the cells, we see that 311 people did not change in their ability to 
detect thelumps, 199 scored low both times (0), and 112 scored high (1) both times. 

ll 
1 . 
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Among those who changed, 100 who scored low on the pretest, scored high on the 
posttest, whereas only 15 people who scored high on the pretest, scored low on the 
posttest. Thus, for those who changed their scores, more moved from low to high 
(100) than from high to low (15). This change is statistically significant at the .000 
level. This indicates that the training provided to these women improved their abil­
ity to detect lumps in a model of a breast. 

Summary for McNemar 

The McNemar test uses an adaptation of the chi-square formula to test the direction 
of change. Only the two cells that include changes are included in the analysis; 
therefore, df = 1. 

ORDINAL DATA, INDEPENDENT GROUPS 

Two commonly used techniques are the Mann-Whitney U, which is used to compare 
two groups and is thus analogous to the t test, and the Kruskal-Wallis H, which is 
used to compare two or more groups and is thus analogous to the parametric tech­
nique analysis of variance. In these techniques, scores for subjects are converted into 
ranks, and the analyses compare the mean ranks in each group. Using data collected 
by Wood (1997), we seek to answer the question, Is type of living quarters related to 
knowledge about breast self-examination? The three types of living quarters are pri­
vate home, apartment, and elder housing. The knowledge score was significantly 
skewed, thus making the nonparametric test appropriate. Figures 4-{i and 4-7 contain 
the computer printouts. 

Kruskal-Wallls Test 

Type of living Mean 
quarters N Rank 

Knowledge score, Private home 199 245.35 
time2 Apartment 87 206.43 

Elder housing 141 174.43 
Total 427 

Test Statistics (a b) 
' 

Knowledge 
score, time 2 

Chi-square 28.240 
df 2 
Asymp. sig. .000 

a Kruskal Wallis Test 
b Grouping variable: Type of living quarteiS 

RGURE 4-6. Computer output, Kruskal-Wallis. 
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Mann-Whitney Test 

Ranks 

What type of 

living quarters? 

Knowledge score, Private home 

lime 2 Apartrment 

Total 

Test Statistics (a) 

Knowledge 
score, time 2 

Mann-Whitney U 7033.000 

Wilcoxon W 10861.000 

z -2.557 

Asymp. Sig. (2 tailed) .011 

a Groupmg Varrable: What type of living quarters? 

Mann-Whitney Test 

Ranks 

What type of 

living quarters? 

Knowledge score, Private hoine 

time 2 Elder housing 

Total 

Test Statistics (a) 

Knowledge 
score, time 2 

Mann-Whitney U 6818.000 

Wilcoxon W 12174.000 

z -4.825 

Asymp. Sig. (2 tailed) .000 
.. a Groupmg Vanable: What rype of hvmg quarrelS? 

AGURE 4-7. Computer output, Mann-Whitney U. 

Mean 

N rank 

199 151.66 

87 124.84 

286 

Mean 

N rank 

199 168.74 

103 118.19 

302 

Sum of 

ranks 

30180.00 

10861.00 

Sum of 

ranks 

33579.00 

12174.00 

n I . 

I 
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Mann-Whitney Test 

Ranks 

What type of Mean Sum of 

living quarters? N rank ranks 

Knowledge score, Apartment 87 103.79 9029-50 
time 2 Elder housing 103 8850 9115-50 

Total 190 

Test Statistics (a) 

Knowledge 
score, time 2 

Mann-Whitney U 3759-500 
Wilcoxon W 9115-500 
z -1.926 
Asymp. Sig. (2 tailed) .054 

.. a Groupmg Vanable: Wha[ type of hvmg quarters? 

- AGURE 4·7. (Continued) 

The Kruskal-Wallis test (see Fig. 4-6), with a significance level of .000, indicates 
that the three groups differ significantly on their knowledge of breast self-examination. 
Looking at the mean ranks, we can see that the group living in private homes scored 
highest (245.35), followed by those living in apartments (2o6.43). Those living in elder 
housing scored lowest (174.43). While we know that there is an overall difference 
across the three groups, we do not know if each pairwise comparison is significant. 

For pairwise comparisons, we use the Mann-Whitney test (see Fig. 4-7), and 
make all the possible pairwise comparisons. Because we will be making three pair­
wise comparisons, we need to consider the chance of a type I error. To protect 
against that error, we can use a Bonfenvni correction. This involves dividing the 
desired level of significance by the number of comparisons we are making (.05/3 = 

.0167). For a comparison to be considered significant, it must have a significance 
level of .0167, not 0.05. The first test compares those living in private homes with 
those living in apartments. The significance level of .011 indicates that these two 
groups are significantly different from each other. Specifically, those in private homes 
scored significantly higher on the knowledge test than did those living in apartments. 
The comparison of those living in private homes with those living in elder housing is 
also significant at the .000 level; that is, those living in private homes scored signifi­
cantly higher than those living in elder housing. The third comparison between those 
in apartments and those in elder housing (p = .044) is not significant when we use 
the Bonferroni correction. Thus, these data indicate that women living in private 
homes score significantly higher on a test of knowlege of breast self-examination 
than those living in apartments or elder housing. There is no significant difference 
between those living in apartments and those living in elder housing. 
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- • t ., " 

I TABLE 4-5 Vanables Contnbutmgto S1gmficant Oif{iJrences be/Ween 
F1equentand Infrequent TSE Performers (N = 791) 

Variable Mann-Whitney U z 
Ethnic background 3082.50 -3.851 

Education 3371.00 -2.449 

Family problems 357050 -1.874 

Social support 3390.50 -1.756 

•p < .OS (two-tailed rest) 

p 
.000" 
.014• 

.050" 

.035• 

From Wynd, C. A. (2002). Testicular self-examination in young adult men. journal of Nursing Scholarship, 
34(3), p. 254. 

Example from the literature 

The Mann-Whitney test was used by Wynd (2002) to study factors related to the 
practice of testicular self-examination (TSE) among young adult men. Table 4-5 con­
tains a table from her study. She compared frequent and infrequent TSE performers. 
Those two groups differed significantly in ethnic background, education, family 
problems, and social support. Additional analyses indicated that African American 
and Hispanic men practiced TSE less frequently than men from other ethnic groups. 
Men without a high school education were less likely to practice TSE. Those who 
reported more family problems and those who had less social support were less 
likely to practice TSE. 

Summary of Kruskai-Wallis and Mann-Whitney U 

The Kruskai-Wallis test is the non parametric analog of the one-way analysis of vari­
ance and the Mann-Whitney U test is the nonparametric analog of the t test. They 
may be used when the data violate the assumptions underlying the parametric tests, 
especially when the data are not normally distributed. 

ORDINAL DATA, DEPENDENT GROUPS 

The last two nonparametric techniques to be presented are the Wilcoxon matched­
pairs signed rank test and the Friedman matched samples. The Wilcoxon matched­
pairs test is analogous to the parametric paired t test, and the Friedman matched 
samples is analogous to a repeated measures analysis of variance. They are used in 
within-subjects designs when subjects serve as their own controls or the outcome 
variables are measured more than once. 

We will start with the Friedman to demonstrate once more how initial analysis 
and posthoc tests might be done using nonparametric techniques. Dr. Robin Wood 
(1997) tested her subjects on their ability to find lumps in models of breasts. She 
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Friedman Test 

Ranks 

Lumps correct, time 1 

Lumps incorrect, rime 1 

Lumps correct, time 2 

Lumps incorrect, time 2 

Test Statistics (a) 

N 

Chi-Square 
df 

Asymp. Sig. 
a Fnedman Tesl 

407 

749.367 

3 
.000 

Mean 

rank 

2.93 

1.77 

3.47 

1.83 

FIGURE 4-8. Computer output, Friedman. 
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counted the number of correct and the number of incorrect lumps they found at two 
points in time. These variables were not normally distributed, thus the use of non­
parametrics is appropriate. 

Each subject has a score on each of these variables. The question is whether the 
subjects differed significantly in their ability to lind correct, versus incorrect lumps, 
and whether this ability changed over time. Figures 4-8 and 4-9 contain the results. 
The mean ranks for the three variables are given first. The ranks vary from a high of 
3.47 for their ability to lind correct lumps at time 2 to a low of 1.77 for the number 
of incorrect lumps they found at time 1. The chi-square has a significance level of 
.000. Because the initial analysis is significant, we will conduct comparisons of pairs 
of ranks. While six pairwise comparisons are possible, only four are of interest. (We 
are not interested in comparing correct lumps at time 1 with incorrect lumps at rime 
2 or vice versa) The Wilcoxon matched-pairs is used for the four comparisons, and 
the Bonferroni correction is .05/4 or .0125. 

In the first comparison, the numbers of correct and incorrect lumps detected at 
time 1 are compared. The subjects found significantly more correct than incorrect 
lumps at time 1 (p = .000). They also found more correct than incorrect lumps at 
time 2 (second comparison, p = .000). In the third comparison we see that they 
found more correct lumps at time 2 versus time 1, which indicates that the training 
was effective (p = .000). They found more incorrect lumps at time 2 than time 1, but 
this difference was not statistically significant when the Bonferroni correction is used 
(p = .023). 

The superscript letters on the printout can be confusing. Look at the first one in 
Fig. 4-9. This is saying that in 273 of the cases, the subjects rated the number of 
incorrect lumps lower than the number of correct lumps. Only five subjects found 
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Wilcoxon Signed Ranks Test 

Ranks 

Lumps Incorrect, Negative ranks 

time 1; lumps Positive ranks 

correct, time 1 Ties 

TO£al 

Lumps incorrect, Negative ranks 

time 2; lumps Positive ranks 

correct, time 2 Ties 

Total 
Lumps correct, Negative ranks 

time 2; lumps Positive ranks 

correct, time 1 Ties 

Total 
Lumps incorrect, Negative ranks 

time 2; lumpS Positive ranks 
incorrect, time 1 Ties 

Total 

a Lumps incorrect, time 1 < lumps correct, time 1 
b Lumps incorrect, time 1 > lumps correct, time 1 
c Lumps incorrect, time 1 = lumps correct, time 1 
d Lumps incorrect, time 2 < lumps correct, time 2 
e Lumps incorrect, time 2 > lumps correct, time 2 
f Lumps incorrect, time 2 = lumps correct, time 2 
g Lumps correct, time 2 < lumps correct, time 1 
h Lumps correct, time 2 > Jumps correct, time 1 
i Lumps correct, time 2 = lumps correct, time 1 

N 

273(a) 
5(b) 

140(c) 
418 

330(d) 
5(e) 

85(0 
420 

51(g) 
226(h) 

1490) 
426 

28(j) 
50(k) 
330(1) 

408 

j Lumps incorrect, time 2 < lumps incorrect, time 1 
k Lumps incorrect, time 2 > lumps incorrect, time 1 
I Lumps incorrect, time 2 = lumps incorrect, time 1 

FIGURE 4-9. Computer output, Wilcoxon. 

Mean Sum of 

rank ranks 

141.45 38614.50 
33.30 166.50 

170.09 56130.00 
30.00 150.00 

104.18 5313.00 
146.86 33190.00 

39.45 1104.50 

39.53 1976.50 

more incorrect lumps than correct lumps. One hundred and forty subjects found an 
equal number of correct and incorrect lumps. Take a few minutes to look at the 
remaining superscript letters to be sure you understand their use. 

EXAMPLE FROM THE LITERATURE 

Tombes and Gallucci (1993) used subjects as their own controls in a study of the 
effects of hydrogen peroxide rinses on the nonnal oral mucosa. There were three 

n 
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"rinse" groups: normal saline, quarter-strength hydrogen peroxide, and half-strength 
hydrogen peroxide. The Friedman test was used to compare the groups. In the 
hydrogen peroxide groups, significant mucosal abnormalities occurred over time. 

Summary of Friedman and Wilcoxon 

SUMMARY 

The Friedman and Wilcoxon techniques are the nonparametric analogs of the 
repeated measures analysis of variance and the paired t test. 

A few of the more commonly reported nonparametric techniques have been pre­
sented. It is important for investigators to examine their data before analysis to deter­
mine which techniques are appropriate. 

Application£xerciseHmdResults "'·,, 

Exercises 

Conduct the appropriate nonparametric analyses to answer the research questions. Write a 
description of your results as it might appear in a manuscript. 

1. Do. men and women d~ffer in their political affiliation? 

2. Does current satisfaction with weight differ significantly from satisfaction with weight at 
age 18? To answer this question, first use the Recode procedure to create two new vari­
ables. Recode both SATCURWT and SATWf18 into new variables where the values of 
1 - 5 = 0, and 6 - 10 = 1. This wiU create two dichotomous variables. Conduct your 
analysis on the dichotomous variables. 

3. Does smoking status affect quality of life in the past month? 

4. Do the respondents to this survey differ significantly on productivity (IPA9), goals (IPA13), 
or worry about the future (IPA29)? 

Results 

1. Exercise Fig. 4-1 contains the results of this analysis. We would report that chi-square was 
used to ailsWefthe research question. Men and women differed significantly in their polit­
ical affiliation (p = .025). More men (24.8%) are Republicans than women (16.9%), and 
more women (35.1%) than men (28.3%) are De;,ocrats. Men (46.9%) and women (48.0%) 
are fairly evenly represented in the Independent category. 

2. Exercise Fig .. 4:-2 contains the results. McNemar was used to answer the research question. 
There is a sig~iftcant difference between ratin&s of satisfaction with weight currendy and at 
age 18 (p = .000). Zero equals a low level of satisfaction and one a high level. Of the 697 
individuals included in the analysis, 168 were dissatisfied at both times (rating = 0), and 
324 were satisfied at both times. Of those who changed their ratings over time, 157 who 
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political affiliation • gender Cross-tabulation 

Gender 

Male Female Total 

Political Republican Count 63 73 136 

affiliation %within 24.8% 16.9% 19.8% 

gender 

Democrat Count 72 !52 224 

%within 28.3% 35.1% 32.6% 

gender 
Independent Count 119 208 327 

o/o within 46.9% 48.0o/o 47.6% 

gender 

Total Count 254 433 687 

% wi[hin 100.0o/o 100.0% !00.0% 
gender 

Chi-Square Tests 

Asyrnp. sig. 
Value df (2 sided) 

Pearson chi-square 7.393(a) 2 .025 

Likelihood ratio 7.298 2 .026 

Linear-by-linear association 2.234 I .135 
N of valid cases 687 

a 0 cells (.0%) have expected count less than 5. The minimum expected count is 50.28. 

EXERCISE FIGURE 4-1. Results for Exercise 1, chi-square. 

were satisfied with their weight at age 18 are no longer satisfied, and 48 people who were 
not satisfied at age 18 are currently satisfied. Therefore, significantly more people reported 
satisfaction with their weight at age 18 than with their current weight. 

3. Exercise Fig. 4-3 contains the results of the analysis. Kruskal-Wallis was used to answer the 
research question. Smoking status is significantly related to quality of life in the past month 
(p = .030). To test pairwise differences, Mann-Whitney U was used. Because three com­
parisons were made, the Bonferroni correction was used (0.05/3); thus a p value of .0167 
was considered significant. There was no significant difference in quality of life between 
those who never smoked and lhose who quit smoking (p = .971). Subjects who never 
smoked rated their quality of life significantly higher than subjects who were still smoking 
(p ~ .010). Subjects who had quit smoking did not rnte their quality of life significantly 
higher than those who were still smoking (p ~ .018). 

Tl 
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McNemar Test 

Satisfaction with current weight recoded &: 
satisfaction with weight at age 18 recoded 

Satisfaction with 

weight at age 18 

Satisfaction recoded 

with current weight 

recoded 0 1 

0 168 157 
1 48 324 

Test Statistics (b) 

N 

Chi-Square (a) 

Asymp. Sig. 

a Continuity Corrected 
b McNemar Test 

Satisfaction with current weight 

recoded & satisfaction with 

weight at age 18 receded 

(/)7 

56.898 

.000 

EXERCISE FIGURE 4-2. Results for Exercise 2, McNemar. 

Kruskal-Wallis Test 

Ranks 

Smoking 

history N 

Quality of life Never 432 

in past month Smoked 

Quit smoking 185 

Still smoking 78 

Total 695 

Mean 

rank 

355.00 

354.51 

293.81 

EXERCISE FIGURE 4-3. Results for Exercise 3, Kruskai-Wallis and Mann-Whitney U. 

131 
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Test Statistics (a, b) 

Quality of life 

in past month 

Chi-Square 7.021 

df 2 

Asymp. Sig. .030 

a Kruskal Wallis Test 
b Grouping variable: Smoking history 

Mann-Whitney Test 

Ranks 

Smoking Mean Sum of 

history N rank ranks 

Quality of life Never 432 309.17 133559.50 
ln past month Smoked 

Quit smoking 185 308.61 57093.50 
Total 617 

Test Statistics (a) 

Quality of life 

in past month 

Mann-Whitney U 39888.500 
Wt.lcoxonW 57093.500 
z -.037 
Asymp. Sig. (2-tailed) .971 

b Grouping variable: Smoking history 

EXEROSE AGURE 4-3. (Continued) 

j 
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Mann-Whitney Test 

Ranks 

Smoking Mean Sum of 
history N rank rnnks 

Quality of life Never 432 262.33 113326.50 
in past month Smoked 

Still smoking 78 217.67 16978.50 

Total 510 

Test Statistics (a) 

Quality of life 

in past month 

Mann-Whitney U 13897.500 
Wilcoxon W 16978.500 

z -2.576 

Asymp. Sig. (2 tailed) .010 

a Grouptng vanable: Smoking hiStory 

Mann-Whitney Test 

Ranks 

Smoking Mean Sum of 

history N rank ranks 

Quality of life Quit smoking 185 138.90 25696.50 

in past month Still smoking 78 115.63 9019.50 

Total 263 

Test Statistics (a) 

Quality of life 

in past month 

Mann-Whitney U 5938.500 

Wilcoxon W 9019.500 

z -2.374 

Asymp. Sig. (2-tailed) .018 

a Grouptng vanable: Smoking hiStory 

EXERCISE AGURE 4-3. (Continued) 
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Friedman Test 

Ranks 

Mean 

Productivity of life 

Defined goals for life 

Worry about future 

Test Statistics (a) 

N 

Chi·Square 

df 

Asymp. Sig. 

a Friedman Test 

698 

472.592 
2 

.000 

WUcoxon Signed Ranks Test 

rank 

2.50 

2.04 

1.46 

Ranks 

Defined goals Negative ranks 

for life- Positive ranks 

Productivity of Ties 

life Total 

Worry about Negative ranks 
future- Positive ranks 

Productivity of Ties 
life Total 

Worry about Negative ranks 
future-Definded Positive ranks 

goals of life Ties 

Total 

a defined goals for life < productivity of life 
b defined goals for life > productivity of life 
c defined goals for life = productivity of life 
d worry about future < productivity of life 
e worry about future > productivity of life 
f worry about future = productivity of life 
g worry about future < defined goals for life 
h worry about future > defined goals for life 
i worry about future = defined goals for life 

N 

341(a) 

114(b) 

245(c) 

700 

531(d) 
61(e) 

106(0 

698 

418(g) 
131(h) 

150(0 

699 

Mean 

rank 

240.71 

189.99 

306.75 

207.31 

286.91 
237.00 

EXERCISE AGURE 4-4. Results of Exercise 4, Friedman and Wilcoxon. 

I 
I 

I 
I 
I 

Sum of 

ranks 

82081.00 

21659.00 

162882.00 

12646.00 

119928.00 

31047.00 
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Test Statistics (b) 

Defined goals for Worry about Worry about 
life-productivity funne-productivity future-defined 

I of life of life goals for of life 

z -IL070(a) -18.205(a) -12.0/!S(a) 

Asymp. Sig. .000 .000 .000 
(2-railed) 

a Based on positive ranks 
b Wilcoxon Signed Ranks Test 

EXERCISE AGURE 4-4. (Continued) 

4. Exercise Fig. 4-4 contains the resuhs. Friedman was used to answer the main question. 
There was an overall significant result (p = .000) in the comparison of the following rat­
ings: productivity, goals, and worry about ilie future. Wilcoxon tests with a Bonferroni 
correction were conducted to test the pairwise comparisons. A p value of 0.0167 was con­
sidered significant. All of the pairwise comparisons were significant. Subjects rated their 
productivity significantly higher than their goals (p = .000) and significantly higher than 
their worry about the future (p = .000). They also rated their goals- significantly higher 
than their worry about the future (p = .000). 
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t Tests: Measuring the 
Differences Between 

Group Means 

Barbara Hazard Munro 

Objectivesfor.ChapterS ·; •· , . 

Afler reading this chapter, you should be able to do the following: 

1. Determine when the t test is appropriate to use. 
2. Discuss how mean difference, group variability, and sample size are related to the 

statistical significance of the t statistic. 
3. Discuss how the results of the homogeneity of variance test are related to choice of 

t test formula. 
4. Select the appropriate t test formula (separate, pooled, or correlated) for a given 

situation. 
S. Interpret computer printouts oft test analyses. 

Many research projects are designed to test the differences between two groups. 
The t test involves an evaluation of means and distributions of each group. The t 
test, or Student's t test, is named after its inventor, William Gosset, who published 
under the pseudonym of Student Gosset invented the t test as a more precise 
method of comparing groups. He described a set of distributions of means of ran­
domly drawn samples from a normally distributed population. These distributions 
are the t distributions and are detailed in Appendix C. 

The shape of the distributions varies depending on the size of the samples drawn 
from the populations. However, all the t distributions have a normal distribution with 
a mean equal to the mean of the population. Unlike the z distributions, which are 
based on the normal curve and estimate the theoretical population parameters, the t 
distributions are based on sample size and vary according to the degrees of freedom 
(df). Theoretically, when an inlinite number of samples of equal size are drawn from 
a normally distributed population, the mean of the sampling distribution will equal 
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the mean of the population. If the sample sizes were large enough, the shape of the 
sampling distribution would approximate the normal curve. 

RESEARCH QUESTION 

When we compare two groups on a particular characteristic, we are asking whether 
the groups are different. The statistical question asks how different the groups are; 
that is, is the difference we find greater than that which could occur by chance alone? 
The null hypothesis for tl).e t test states that any difference that occurs between the 
means of two groups is a difference in the sampling distribution. The means are dif­
ferent not because the groups are drawn from two different theoretical populations, 
but because of different random distributions of the samples from such a population. 
The null hypothesis is represented by the t distributions constructed by the random 
sampling of one population. When we use the t test to interpret the significance of 
the difference between groups, we are asking the statistical question, "What is the 
probability of getting a difference of this magnitude in groups this size if we were 
comparing random samples drawn from the same population?" In other words, 
"What is the probability of getting a difference this large by chance alone?" 

An example of the t test used to compare two groups is the study of Appel, 
Harrell, and Deng (2002), who compared African American and White southern 
rural women on physiological variables (Table 5-1). The two groups of women dif­
fered significantly on two of the four physiological variables, weight and body mass 
index (BMI). African American women were significantly heavier and had signifi­
cantly higher BMis. The groups of women did not differ on age (p = .064) or 
height (p = .0931). 

To answer research questions through use of the t test, we compare the differ­
ence we obtained between our means with the sampling distribution of such differ­
ences. In general, the larger the difference between our two means, the more likely 
it is that the t test will be significant. However, two other factors are taken into 

I TABLE 5-1 PhysJO!oglca/ Vanables by Rc"c 111 o= 7, 7 I 0) 

A(Hcan American (n = 300) White (n = 810} 

Variables M (SD) Range M (SO) Range t p 

Age 37.3 (6.9) 24-1 38.2 (6.1) 22--{iS -1.85 .64 
Weight (kg) 78.5 (17.5) 45.4-158.2 69.0 (15.3) 40.4-168.1 8.05 .001 
Height (em) 163.5 (7.3) 123.1-187.9 164.3 (6.7) 134.6-195.5 -1.6 .0931 
BMI (kg!m') 29.5 (7.0) 15.6-61.7 25.5 (5.6) 14.2--65.6 8.32 <.0001 

Nole. M = mean; SO = standard deviation; BMI = body mass index. 
From Appel, S.J-, Harrell,]. S., & Deng, S. (2002). Racial and socioeconomic differences in risk factoJS for cardiovascular dis­
ease among southern rural women. NuTStng Research, 51(3). 144. 
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account: the variability and the sample size. An increase in variability leads to an 
increase in err:or, and an increase in sample size leads to a decrease in error. 

Given the same mean difference, groups with less variability will be more likely 
to be significantly different than groups with wide variability. 1bis is because in 
groups with more variability, the error term will be larger. If the groups have scores 
that vary widely, there is likely to be considerable overlap between the two groups; 
thus, it will be difficult to ascertain whether a difference exists. Groups with less 
variability and a real mean difference will have distributions more clearly distinct 
from each other; that is, there will be less overlap between their respective distribu­
tions. With more variability (thus, larger error), we need a larger difference to be rea­
sonably "sure" that a real difference exists. 

TYPE OF DATA REQUIRED 

For the t test, we need one nominal level variable, with two levels as the independ­
ent variable. A simpler way to say this is that we must have two groups. The 
dependent variable should be continuous. 

Some people have criticized the use of the term continuous rather than speci­
fying the level of measurement of the variable (ordinal, interval, ratio). However, 
even when data are measured at the ordinal level, they may be appropriate for use 
in parametric analyses if they approximate the data required to meet the assump­
tions of a given analysis. Nunnally and Bernstein (1994) consider any measure that 
can assume 11 or more dichotomous levels as continuous and state that with multi­
category items, "somewhat fewer items are needed to qualify" (p. 570). Scales with 
fewer items are considered discrete. For ease of expression, we use the term con­
tinuous to describe scale scores. 

The t test has been commonly used to compare two groups. The mathematics 
involved are simpler than those required for analysis of variance, which is discussed 
in Chapter 6. However, when comparing two groups, it does not matter whether one 
uses a t test or a one-way analysis of variance: The results will be mathematically 
identical. The t statistic (derived from the t test formula) is equal to the square root of 
the F statistic (derived from the one-way analysis of variance), or t 2 = F. 

With the use of the computer, ease of calculation is not an issue, so some peo­
ple use analysis of variance to compare two groups. Either way is correct. The typ­
ical t test table has the advantage of clearly presenting the means being compared 
in the analysis. 

ASSUMPTIONS 

The three assumptions underlying the ttest concern the type of data used in the test 
and the characteristics of the distribution of the variables: 

1. The independent variable is categorical and contains two levels; that is, you 
have two mutually exclusive groups of subjects. Mutually exclusive means that a 
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subject can contribute just one score to one of the two groups. This is the 
assumption of independence. When this assumption is violated, as when sub­
jects are measured twice, a correlated or paired t test may be appropriate. 

2. The distribution of the dependent variable is normal. If the distribution is 
seriously skewed, the t test may be invalid. 

3. The variances of the dependent variable for the two groups are similar. This is 
related to the assumption implied by the null hypothesis that the groups are 
from a single population. This assumption is called the requirement of 
homogeneity of variance. 

Meeting this last assumption protects against type II errors (incorrectly accepting the 
null hypothesis). When the variances are unequal-that is, when the variation in 
one sample is significantly greater than the variation in the other-we are less likely 
to find a significant t value. Therefore, we might incorrectly conclude that the 
groups Were drawn from the same population when they were not. 

What if the variances are significantly different? Occasionally, groups that we 
want to compare do not have equal variances. Fortunately, a statistical method 
approximates the t test and can be interpreted in the same way using a different cal­
culation for the standard error. 

Actually, three different formulas based on the t distribution can be used to 
compare two groups: 

1. The basic formula, sometimes called the pooled formula, is used to compare 
two groups when the three assumptions for the t test are met. 

2. When the variances are unequal, the separate formula is used. This takes into 
account the fact that the variances are not alike and is a more conservative 
measure. 

3. When the two sets of scores are not independent (assumption I)-that is, there 
is correlation between the data taken from the two groups--adjustment must be 
made for that relationship. That formula often is called the correlated t test or 
the paired t test. Comparing a group of subjects on their pretest and posttest 
scores is an example of when this technique would be used. Because these are 
not two independent groups, but rather one group measured twice, the scores 
will most likely be correlated. Another example is when the two groups consist 
of matched pairs. If the pairs are carefully matched, their scores will correlate, 
and the standard t test would not be appropriate. 

When checking the assumptions, the first step is to be sure that each subject con­
tributes only one score to one of the groups. In a randomized clinical trial with 
angioplasty patients (Sulzbach, Munro, & Hirshfeld, 1995), some patients who had 
been enrolled in the study in one of the two groups returned to the hospital for a 
second angioplasty. They could not be reentered into the study without violating the 
principles underlying the notion of mutual exclusivity. 

Next, examine the frequency distribution of the dependent variable. Is it nor­
mally distributed? Remember that you divide the skewness by the standard error of 
tl\e skewness to make this determination. Values that are greater than :!:1.96 are 
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considered skewed. Alternatives for dealing with skewed data include data transfor­
mations, ca~egori.zing the variable, or using a nonparametric (distribution free) test. 
If data transformation is selected and successful, then the t test can still be used. If 
the variable is categorized, then a chi-square would be appropriate. The Mann­
Whitney U is an appropriate nonparametric test. 

For the test of homogeneity of variance, the analysis is run and the results 
are examined. The computer produces a test of the assumption, the results of 
two t tests, the pooled or equal variance formula, and the separate or unequal 
variance formula. An example is given after the discussion of sample size 
considerations. 

SAMPLE SIZE CONSIDERATIONS AND POWER 

How many subjects do you need for a t test? Cohen (1987) provides tables for deter­
mining sample size based on power and effect size determinations, or a computer­
ized program can be used. To enter the tables, we must first decide whether we will 
be conducting a one- or two-tailed test and what our alpha or probability level will 
be. If there is sufficient theoretical rationale and we can hypothesize that one group 
will score significantly higher than the other, we will be using a one-tailed test. If we 
simply want to answer a question such as, "Is there a difference between the ex per­
imental and control groups on the outcome measure?" then we will use a two-tailed 
test. When planning a study, the sample size is set based on the planned analysis 
that will require the highest number of subjects. If you were going to run three I tests 
and one would be two tailed, you would base your sample on that, because it 
requires more subjects than the one-tailed tests. 

The power of the test of the null hypothesis is "the probability that it will lead 
to the rejection of the null hypothesis" (Cohen, 1987, p. 4). A power of 0.80 
means, therefore, that there is an 80% chance of rejecting the null hypothesis. The 
higher the desired power, the more subjects required. Cohen (1987) suggests that 
for the behavioral scientist, a power of 0.80 is reasonable, given no other basis for 
selecting the desired level. 

The effect size should be based on previous work, if it exists, rather than sim­
ply picking a "moderate" effect from the Cohen (1987) tables. The effect size for the 
I test is simply the difference between the means of the two groups divided by the 
standard deviation for the measure. Cohen's moderate effect size is set at 0.5, which 
means half of a standard deviation unit. As an example, the graduate record exami­
nations (GRE) have a mean of 500 and a standard deviation of 100. Half of a stan­
dard deviation unit on that measure would be 50 (100/2). Thus, a moderate effect 
would be a difference of 50 points on the GRE between two groups. 

In a test of the model of transitional nursing care (Brooten et al., 1995), the 
LaMonica-Oberst Patient Satisfaction Scale was used. A 17-point difference was 
found between the experimental and control groups. The standard deviation on the 
scale was 24. If we were going to use that scale again in a similar experiment, what 
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I TABLE S-2 n to Detectd byt Test 

a2 = .05 (a,= .02S) 

Power .10 .20 .30 .40 .50 .60 .70 .80 1.00 1.20 1.40 

.25 332 84 38 22 14 10 8 6 5 4 3 

.50 769 193 86 49 32 22 17 13 9 7 5 

.60 981 246 110 62 40 28 21 !6 11 8 6 
2/3 1144 287 128 73 47 33 24 19 12 9 7 
.70 1235 310 138 78 50 35 26 zo 13 10 7 
.75 1389 348 !55 88 57 40 29 23 15 11 8 
.80 1571 393 175 99 64 45 33 26 17 12 9 
.85 1797 450 201 113 73 51 38 29 19 14 10 
.90 2102 526 234 132 85 59 44 34 22 !6 12 
.95 2600 651 290 163 105 73 54 42 27 19 14 
.99 3675 920 409 231 148 103 76 58 38 27 20 

a,= .05 (a2 = .10) 

J 

Power .10 .20 .30 .40 .50 .60 .70 .80 1.00 1.20 1.40 

.25 189 48 21 12 8 6 5 4 3 2 2 

.50 542 136 61 35 22 16 12 9 6 5 4 

.6o 721 181 81 46 30 21 15 12 8 6 5 
2/3 862 216 96 55 35 25 18 14 9 7 5 
.70 942 236 105 6o 38 27 20 15 10 7 6 
.75 1076 270 120 68 44 31 23 18 11 8 6 
.80 1237 310 138 78 50 35 26 20 13 9 7 
.85 1438 360 16o 91 58 41 30 23 15 11 8 
.90 1713 429 191 108 69 48 36 27 18 13 10 
.95 2165 542 241 136 87 61 45 35 22 16 12 
.99 3155 789 351 198 127 88 65 50 32 23 17 

From Cohen, ]. 0987). Statistical power analysis for the behavior sciences (Rev. ed.). Hillsdale, NJ: Lawrence Erlbaum Assoc. 
pp. 54-55. 

would our expected effect size be? Divide the difference between the means of 17 
by the standard deviation of 24 (17124), which gives an effect size of . 71. 

Table 5-2 gives a section of Cohen's tables. The top section has the table for a 
two-tailed test (a,) at the .05 level (or a one-tailed test -at the .025 level). Given an 
effect size of . 70 (numbers across top of table) and a power of .80 (numbers down 
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the left side of the table), we would need 33 subjects in each of our groups. If we 
had used the moderate effect (defined by Cohen as .50), we would need 64 subjects 
in each of our groups at the same power level. The larger effect size indicates a 
larger difference between the mean scores and can be detected by fewer subjects. 

Now look at the lower section, which includes a one-tailed test at the 0.05 level 
(a1 = .05). Given an effect size of .70 and a power of .80, we would need 26 sub­
jects per group. Thus, we can see that a one-tailed test is more powerful; that is, we 
need fewer subjects to detect a significant difference. 

To summarize, for sample size with the I test, you must detennine: 

• One tailed versus two tailed 
• Alpha level 
• Effect size 
• Power 

You must also estimate how many subjects will be "lost" during data collection and 
oversample to be sure of having the appropriate numbers for analysis. 

COMPUTER ANALYSIS 

Dr. Robin Wood 0997) collected data from women in Massachusetts and Georgia. 
To compare these two groups of women on their years of education, a 1 test was 
used. Figure 5-1, produced by SPSS for Windows, contains the results. Author com­
ments have been added and appear in a shaded box. The first table contains the 
group statistics. We see that 99 women were from Massachusetts and 333 from 
Georgia. The Massachusetts group on average completed 12.6 years of school, 
whereas the Georgia group averaged 10 years. 

The second table, titled Independent Samples Test, contains Levene's test for 
equality of variances. This is a test of the equality of variance assumption. The test 
is not significant (p = . 787), indicating that the variances are equal. We can see in 
the table of Group Statistics that the standard deviations for the two groups were 
4.19946 and 4.19624. The Levene's test tells us that these numbers are equivalent, 
and that the equal variance or pooled formula t test is appropriate. 

The computer produces the equal (pooled) variance formula and the unequal 
(equal variances not assumed or separate) variance formula. Always look first at 
Levene's test. If the significance level exceeds .05, report the equal variance 
(pooled) results; if the significance level is less than .05, report the unequal (sepa­
rate) variance results. In this example, we report the equal variance formula. 

The Independent Samples Test table contains both results. Since the variances 
were equal, we would report a t of 5.435, df = 430, and p = .000. Our analysis indi­
cates that the women from Massachusetts had significantly more years of education 
(mean = 12.6) than did. the women from Georgia (mean = 10.0). The computer 
printed out the two-tailed significance. For a one-tailed significance, simply divide 
the p value by 2. 



.. 
t T-Test 

Group Statistics 

State N Mean Std. deviation Std. error mean 

What is the highest grade MA 99 12.6111 4.19946 .42206 

or year of school that GA 333 10.0000 4.19624 .22995 

you completed? 

Independent Samples Test 

Levene's rest 

for equality of t test for 

variances equality of means 

95% confidence 

interval of the 

difference 

Sig. Mean Std. error 

F Sig. t df (2 tailed) dlfference difference Lower Upper 

What is the highest Equal variances .073 .787 5.435 430 .000 2.6111 .48044 1.66681 3:55541 

grade or year of assumed 

school that you Equal variances 5.433 160.638 .000 2.6111 .48064 !.66192 3.56030 

completed? not assumed 
-- -- -· _L.,__ - --· -

AGURE 5-1. Computer output, independent t tests. 

---. 
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I TABLE 5-3 Raoal D1f{erences m Sample Chamctensttcs ~v Ch1-Square a no c Test 

Variable Whites 81aclcs Odds Ratio 
(Categorical) (n = 598) N (%) (n = 44) N(%) p (95% Cl) 

Insured by Medicare, Medicaid, 76 (12.8) 11 (25.0) .041 2.27 (1.10, 4.68) 
city welfare, or none 

Diabetes 174 (29.1) 23 (52.3) .001 2.67 (1.44, 4.95) 

Chronic renal failure 64 (10.7) 12 (27.3) .002 3.13 (1.54, 6.38) 

Current smoking 180 (31.0) 21 (48.8) .016 2.12 (1.14, 3.96) 

Pulmonary edema 100 (16.7) 17 (38.6) .001 3.14 (1.65, 5.97) 
Nonwhite physician 25 (4.2) 12 (27.3) .000 8.58 (3.95, 18.62) 
Noncardiac physician 192 (32.1) 26 (59.1) .001 3.05 (1.64, 5.71) 

Whites (n = 598) 8laclcs (n = 44) 

Variable (Continuous) Mean(SD) Mean(SD) p 
Age 66.99 (12.65) 61.39 (13.40) .005 

Note. CI = confidence interval. 
From Funk, M., Ostfeld, A. M., Chang, V. M. & Lee, F. A. (2002). Racial differences in the use of cardiac procedures in patients 
with acute myocardial infarction. NursingResearch,51(3), p. 149. 

EXAMPLE FROM A PUBLISHED STUDY 

Funk and colleagues (2002) studied the racial differences in the use of cardiac pro­
cedures in patients with acute myocardial infarctions. First, they compared the two 
racial groups on various demographic characteristics. They used chi-square for the 
categorical variables and t test for the continuous variable. Table 5-3 contains the 
results of their comparison of the ages of the two groups. There was a significant dif­
ference in age between the Black and Whites in their study (p = .005). Whites were 
significantly older (mean age = 67) than Blacks (mean age = 61). 

CORRELATED OR PAIRED tTEST 

If the two groups being compared are matched or paired on some basis, the scores 
are likely to be similar. The chance differences between the two groups will not be 
as large as when they are drawn independently. In the correlated t test, a correction 
is made that has the effect of increasing t, thus making it more likely to find a sig­
nificant difference if one. exists. 

Figure 5-2 contains a computer printout produced by SPSS for Windows, using 
data collected by Wood (1997). Subjects were tested on their knowledge of breast 
self-examination at two points in time. There was a significant change over time with 
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T-Test 
Paired Samples Statistics 

Mean N Std. deviation Std. error mean 

Pair I Knowledge score 50.0683 439 20.53497 .98008 

time! 
Knowledge score 71.0706 439 22.83537 1.08987 
time2 

---- ---- --

Paired Samples Correlations 

N Correlation Sig. 

Pair 1 Knowledge score 

time 1 
&%of 

total 439 .441 .000 
Knowledge score, 

time2 

Paired Samples Test 

Paired cllfferences 

95% confidence 

interval of the 

difference 

Std. Std. error Sig. 
Mean deviation mean Lower Upper I df (2 tailed) 

Pair 1 Knowledge score 

time I 

&%of 

total -21.0023 23.01275 1.09834 -23.1609 -18.8436 -19.122 438 .000 

Knowledge score, 

time2 

FIGURE S-2. Computer output, paired t test. 

·~-------- -- -----·- ----- ~~~_, 
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subjects scoring significantly higher (p = .000) at the second testing (mean = 71) 
than at the first testing (mean = 50). The correlation between the two scores, pre­
sented in the second table, was .441, significant at the .000 level. The Paired Samples 
Test table shows that the means differed by 21.0023. The t value of -19.122, with 
df = 438, has a two-tailed significance of .000 (at least less than .001). 

The t test is a statistical method for comparing differences between two groups. The 
test requires a continuous depende~t variable on which the groups are being com­
pared. The test assumes that the variable is normally distributed in the populations 
from which the samples are drawn and that the samples have equivalent variances. 
The t test is particularly useful in experimental and quasi-experimental designs in 
which an experimental and a control group are compared. 

Application···Exercisesand·Results 

Exercises 

Answer the following research questions by running the appropriate t tests and writing up the 
results. 

1. Do people who have never smoked differ significantly from those who are still smoking on 
positive psychological attirudes (total IPPA score)? 

2. Do current ratings of quality of life differ significantly from ratings of quality of life at 
age 18? 

Results 

1. An independent l test should be used to answer this question. On rhe SMOKE variable, 
only two groups are selected, those who never smoked (0) and those who are still smok­
ing (2). Exercise Fig. 5-1 contains the results. 

Which t test should be reported? Because Levene's test for equality of variances is 
significant (p = .000), the equal variances not assumed (separate) formula should be 
reported. We would report that people who never smoked scored significantly higher 
(p = .004) on the total IPPA score (mean = 154.67) than did those who are still smok­
ing (mean= 141.35). It should be noted that there was a large difference in the size of 
the two groups. 

2. There was no significant difference (p = .251) between the ratings of quality of life in the 
past month (mean = 4.27) and at age 18 (mean = 4.22). The correlation between the two 
measures was .331 (p = .000). Exercise Fig. 5-2 contains the printout. 



fest 
Group Statistics 

Smoking Std. error 

history N Mean Std. deviation mean 

'OTAL Never smoked 410 154.6683 26.41131 1.30436 

Still smoking 71 141.3521 36.57013 4.34008 
' I 

' - - --

Independent Samples Test 

Levene's test for 
equality of variances t test for equality of means 

95% conf 
interval 

differ< 

Sig. Mean Std. error 

F Sig. t df (2 railed) difference difference Lower 

TOTAL Equal 14.086 .000 3.683 479 .000 13.3162 3.61540 6.21219 
variances 

assumed 

Equal 2.938 83.100 .004 13.3162 4.53184 4.30268 
variarices not 
assumed 

EXERCISE AGURE 5·1. Results of Exercise 1, Independent samples t test. 



T-Test 

Paired Samples Statistics 

Mean N Std. deviation Std. error mean 

Pair 1 Quality of life 4.27 697 1.043 .039 

in past month 

Quality of life 4.22 697 1.123 .043 

at age 18 I 

I 

Paired Samples Correlations 

N Correlation Sig. 

Pair 1 Quality of life 

in past mol\th 

& quality of life 697 .331 .000 

at age 18 
-· 

Paired Samples Test 

Paired differences 

95% confidence 

interval of the 

difference 

Std. Std. error Sig. 

Mean deviation mean Lower Upper t elf (2-tailed) 

Pair 1 Quality of life 

in past month-

quality of 0.5 1.254 0.47 -.04 .15 1.148 696 .251 

life at age 18 
--

EXERCISE AGURE 5-2. Results of Exercise 2, paired samples t test. 

-~ 





Differences Among 
Group Means: One-Way 

Analysis ofVariance 

Barbara Hazard Munro 

Objectives;for: Chapter6 , · ,, 

After reading this chapter, you should be able to do the following: 

1. Determine when analysis of variance is appropriate to use. 
2. interpret a computer printout of a one-way analysis of variance. 
3. Describe between-group, within-group, and total variance. 
4. Explain the use of posthoc tests and a priori comparisons. 
5. Report the results of one-way analysis of variance in a summary table. 

Many times, a clinical research question involves a comparison of several groups 
on a panicular measure. In Chapter 5, we discussed the t test as a method for exam­
ining the difference between two groups. The basic t test compares two means in 
relation to the distribution of the differences between pairs of means drawn from a 
random sample. When we have more than two groups and are interested in the dif­
ferences among the set of groups, we are dealing with different combinations of 
pairs of means. If we choose to analyze the differences by t test analysis, we would 
need to do a number of t tests. Suppose that we had four different groups--A, B, C, 
and D-that we wanted to compare on a particular variable. If we were interested 
in the differences among the four groups, we would need to do a t test for each of 
the possible pairs that exist in the four groups. We would have A versus B, A versus 
C, A versus D, B versus C, B versus D, and C versus D. In all, we would have six 
separate comparisons, each requiring a separate analysis. 

The problem with conducting such multiple-group comparisons relates to the 
underlying concept of statistical analysis. Each test is based on the probability that 
the null hypothesis is true. Therefore, each time we conduct a test, we are running 
the risk of a type I error. The probability level we set as the point at which we reject 
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the null hypothesis also is the level of risk with which we are comfortable. If that 
level is 0.05, we are accepting the risk that 5 of 100 times, our rejection of the null 
hypothesis will be in error. However, when we calculate multiple t tests on inde­
pendent samples that are being measured on the same variable, the rate of error 
increases exponentially by the number of tests conducted. For example, with our 
four-group problem, the error rate increases to 18 of 100 times, a substantial increase. 
The calculation of the rate of type I errors is determined by the following formula: 

1-(1-a)' 

where a = the level of significance for the tests and t = the number of test com­
parisons used. In our example, the calculation would give us: 

1 - (1 - 0.05)4 = 0.18. 

Instead of using a series of individual comparisons, we examine the differences 
among the groups through an analysis that considers the variation across all groups 
at once. This test is the analysis of variance CANOVA). 

STATISTICAL QUESTION IN ANALYSIS OF VARIANCE 

The statistical question using ANOVA is based on the null hypothesis: the assump­
tion that all groups are equal and drawn from the same population. Any difference 
comes from a random sampling difference. The question answered by the ANOVA 
test is whether group means differ from each other. 

TYPE OF DATA REQUIRED 

With ANOVA, the independent variable(s) are at the nominal level. A one-way 
ANOVA means that there is only one independent variable (often called factor). That 
independent variable has two or more levels. Gender would be a variable with two 
levels, whereas race, religion, and so forth may have varying numbers of levels 
depending on how the variable is defined. Two-way ANOVA indicates two inde­
pendent variables, and n-way ANOVA indicates that the number of independent 
variables is defined by n. The dependent variable must be continuous and meet the 
assumptions described in the next section. 

For example, Anderson and Helms (1998) used analysis of variance to compare 
hospitals grouped by size (small, medium, large, and very large) on their scores on the 
Referral Data Inventory (RDI), which "measures the amount and type of information an 
ECF (extended care facility) receives upon referral of an elderly patient from a hospi­
tal, as well as the organizational and medical factors associated with interorganizational 
communication" (p. 388). Table 6-1 contains an edited version of the results from the 
study. The RDI scores can range between 0 and 40, with higher scores indicating more 
data sent from hospital to extended care facility. Looking at the mean scores, we can 
see that large hospitals sent the least data (mean = 30.02), and very lruge hospitals sent 
the most (36.o6). The F ratio is significant at p < .0001. The Scheffe posthoc test was 
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I TABLE 6-1 Summary of ANOVA for Size of Refemng 
Hospital (N = 4S5) 

Total Score 

Hospital Size (0-40) M (SO) 

Small (Sm) 32.66 (2.37) 
(n ~ 50) 

Medium (Med) 32.41 (2.46) 
(n ~ 126) 

Large (Lg) 30.02 (3.06) 
(n ~ 257) 

Very Large (V!g) 36.06 (3.22) 
(n ~ 22) 

SS (Between Grp.) 1171.85 
SS (Within Grp.) 3661.43 
df (Between [Within]) 3 [451] 

MS (Between Grp.) 390.61 
MS (Within Grp.) 8.11 

F ratio 48.11 .. 

Scheffe Lg <others 
Vlg > O{hers 

"'P < .ooo1. 
Adapted from Anderson, M. A., & Helms, L. B. (1998). Extended care referral after 
hospital discharge. Research in Nursing & Health, 21(5), 385-394. 
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used to detennine which pairs of scores were significantly different. There are six pair­
wise comparisons that can be made, small with medium, small with large, small with 
very large, medium with large, medium with very large, and large with very large. You 
wouldn't expect the small- and medium-sized hospitals to be significantly different, 
given the closeness of their mean scores. The authors have reported the significant 
results at the bottom of the column. Large (with the lowest mean score) is reported as 
significantly less than the other three groups, and Very Large (with the highest mean 
score) is reported as significantly higher than the other three groups. 

ASSUMPTIONS 

AN OVA has been shown to be fairly robust. This means that even if the researchers 
do not rigidly adhere to the assumptions, the results may still be close to the trutl1. 
The assumptions for AN OVA are the same as those for the t test; that is, the dependent 
variable should be a continuous variable that is nom13lly distributed, the groups should 
be mutuaHy exclusive (independent of each other), and the groups should have 
equal variances (homogeneity of variance requirement). 
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I TABLE 6-2 Sample S1ze Dew muwt1011 

u=4 

f 

Power .05 .10 .15 .20 .25 .30 .35 .40 .50 .60 .70 .80 

.10 74 19 9 6 4 3 2 2 

.50 514 129 58 33 21 15 11 9 6 5 4 3 

.70 776 195 87 49 32 22 17 13 9 6 5 4 

.80 956 240 107 61 39 27 20 16 10 8 6 5 

.90 1231 309 138 78 50 35 26 20 13 10 7 6 

.95 1486 372 166 94 60 42 31 24 16 11 9 7 

.99 2021 506 225 127 82 57 42 33 21 15 11 9 

Adapted from Cohen, J. (1987). Statistical power analysis for the behavioral sciences (Rev. ed.). Hillsdale, NJ lawrence 
Erlbaum Assoc. 

SAMPLE SIZE CONSIDERATIONS AND POWER 

The principles relating to considerations of sample size and power are based on those 
outlined in Chapter 5, where two means were compared through use of the t test. 
Using means and standard deviations from previous work, we can calculate expected 
effect sizes, either by using the formulas provided in Cohen (1987) or by one of the 
software programs available. Given an expected effect size, desired power, and alpha 
level, we can determine sample size. For example, Table 6-2 contains an excerpt from 
Cohen's Table 8.44 (p. 384). It is used to determine appropriate sample size when 
alpha is .05 and the degrees of freedom (dj, u) equal 4. Because the dfis one less than 
the number of groups, this table is used when there are five groups. The effect sizes 
are indicated by f across the top of the table, and the power values are listed down 
the left side. Suppose we calculated an effect size of . 30. (Cohen defines a moderate 
effect size as .25, which with two groups is still half of a standard deviation unit.) If 
we desired a power of .80, how many subjects would we need in each group, and 
how many would we need overall? We would need 27 subjects in each group, and 
because there are 5 groups, we would need a total of 135 subjects. 

SOURCE OF VARIANCE 

According to the nuU hypothesis, all groups are from the same population, and each 
of their scores comes from the same population of measures. Any variability of 
scores can be seen in two ways: First, the scores vary from each other in their own 
group; and second, the groups vary from each other. The first variation is caUed 
within-group variation; the second. variation is called between-group variation. 
Together, the two types of variation add up to the. total variation-.~---· 
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Students often are confused when we say that ANOVA tells us whether the 
means of groups differ significantly and then proceed to talk about analyzing vari­
ance. The t test was clearly a test of mean difference, because the difference between 
the two means was ·contained in the numerator of the t test formula. It is important 
to understand how analyzing the variability of groups on some measure can tell us 
whether their measures of central tendency (means) differ. 

·With ANOVA, the variance of each group i" measured separately; all the subjects 
are then lumped together, and the variance of the total group is computed. If the 
variance of the total group (total variation) is about the same as the average of the 
variances of the separate groups (within-group variation), the means of the separate 
groups are not different. This is because if total variation is the sum of within-group 
variation and between-group variation, and if within-group variation and total vari­
ation are equal, there is no between-group variation. This should become more 
clear in the diagrams that follow. However, if the variance of the total group is much 
larger than the average variation within the separate groups, a significant mean dif­
ference exists between at least two of the subgroups. In that case, the within-group 
variation does not equal the total variation. The difference between them must equal 
the between-group variation. 

To visualize the difference in the types of variation, consider three groups 
exposed to three different experimental conditions. Suppose that the three conditions 
yielded such widely different scores that there was no overlap among the three 
groups in terms of the outcome measure (Fig. 6-1). We could then represent our three 

Grand mean 

Frequency 

Value 

- - - Between group 
variation 

- Within group 
variation 

AGURE 6-1. Between-group and within-group variation: The case of no overlap. 
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groups in tenns of their relationship to each other and in terms of a total group. Each 
group would then have its own mean and its own distribution around irs mean. At 
the same time, there would be a grand mean, which is a mean for all the groups 
combined. As shown in Figure 6-1, we can look at the variation within the groups 
and between the groups. The combination of the within-group and between-group 
variation equals the total variation. 

The ANOVA test examines the variation and tests whether the between-group 
variation exceeds the within-group variation. When the between-group variance is 
greater (statistically greater) than the within-group variance, the means of the groups 
must be different. However, when the within-group variance is approximately the 
same as the between-group variance, the group's means are not importantly differ­
ent. This relationship between the difference among groups and the different types 
of variance is shown in Figure 6-2. 

Frequency 

Frequency 

Ho true 

x, X2 x3 
I I I 

H0 false 

x, 
I 

x, 
I 

AGURE 6·2. Relationship of variation to nu11 hypothesis. 

x, 
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H0 true 

Frequency 

Ho false 

Frequency 

FIGURE 6~3. Effect of within-group variation on null hypothesis. 

When the null hypothesis (H,) is true, the groups overlap to a la~ge extent, anrl the 
within-group variation exceeds the between-group variation. When the null hypothe­
sis is false, the groups show little overlapping, and the distance between group is 
greater. In the lower portion of Fig. 6-2, we see that group 1 overlaps ve'Y little with 
group 2 and not at all with group 3. Groups 2 and 3 do overlap. In that case, it may be 
that group 1 scored significantly lower than groups 2 and 3, and that groups 2 and 3 
do not differ significantly from each other. Thus, the group variation and the deviation 
between group means detennine the likelihood that the null hypothesis is true. 

Figure 6-3 illustrates the fact that when the variation within a group or groups is 
great, the difference between the groups must be greater than when the distribution 
within groups is narrow to reject the null hypothesis. In the same way, when the 
group distributions are narrow (low within-group variance), relatively small between­
group differences will be significant. 

MEASURE OF VARIANCE: SUMS OF SQUARES 

The kinds of variation of scores within groups has an inruitive and a statistical mean­
ing. We have discussed the intuitive meaning as the extent to which the scores 
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I TABLE 6-3 Calwlotwn o{St~m of Squares 

Group 1 

1 

2 

3 
2 

x, 2 

Total Sum of Squares 

Raw Scores 

1 

2 

3 
2 

4 

5 
3 
4 

6 
8 

5 
5 

Grand Mean = 4 
Total sum of squares ~ 42 

Within Sum of Squares 

Raw Scores 

1 

2 

3 
2 

X=2 

Group2 

4 

5 

3 
4 

4 

Deviations from Grand Mean 

1-4 ~ -3 

2- 4 ~ -2 

3- 4 ~ -1 
2-4 ~ -2 

4- 4 ~ 0 
5-4= 1 
3- 4 = -1 

4-4= 0 

6-4~ 2 

8-4= 4 

5-4= 1 

5-4= 1 

Sum=O 

Group 1 

Deviations from Group Mean 

1- 2 = -1 

2- 2 = 0 

3- 2 ~ 1 

2- 2 = 0 

Sum=O 

Group 3 

6 

8 

5 
5 

6 

Squared Deviation 

9 
4 

1 

4 

0 

1 

1 

0 

4 

!6 
1 

1 

42 

Squared Deviations 

1 

0 

1 

0 

Sum- 2 

(continued) 
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I 
-~ -

TABLE 6-3 (Contmued) 

·croup2 

Raw Scores Deviations from Group Mean Squared Deviations 

4 

5 
3 
4 

X=4 

6 
8 

5 

5 

X=6 

Within sum of squares= 2 + 2 + 6 = 10 

Between Sum of Squares 

4 ~ 4 = 0 

5-.f= 1 
3-4 = -1 

4-4= 0 

Sum=O 

Group3 

6-6 = 0 
8-6 = 2 

5-6= -1 
5-6= -1 

Sum=O 

Deviations of Group Means 
from Grand Mean Squared Deviations Number in Group 

Group 1 2 ~ 4 = - 2 

Group 2 4 - 4 = 0 

Group 3 6 - 4 = 2 

4 

0 

4 

Between Sum of Squares = ( 4)( 4) + ( 4)(0) + ( 4)( 4) = 32 

Summary Table 

Source of Variance ss df 

Between group 32 2 

Within group 10 9 
Total 42 11 

MS 

16 

Lll 

4 

4 
4 

F 

14.41 

0 

1 

1 

0 

Sum= 2 

0 

4 

1 

1 

Sum=6 

p 

<.01 
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contains an example of the calculation of the sums of squares using the formulas 
based on the deviations of the scores from their respective means. The data consist 
of four scores in each of three groups. The means for the three groups are 2, 4, and 
6, respectively. 

Sum of Squares for Total Variation 

The total sum of squares is equal to the sum of the squared deviations of each 
score in all groups from the grand mean. In our example, the grand mean (mean 
of the nine scores) is 4. The sum of the deviations around the mean equals zero, 
and the sum of the squared deviations equals 42. This total sum of squares repre­
sents the basis of the null hypothesis that all the subjects belong to one popula­
tion, which is described by the grand mean. 

Sum of Squares for within-Group Variation 

The within-group variation is the total of the variation that occurs in e4;1ch subgroup. 
It is calculated by finding the sum of squares for each group separately and then 
summing the results. The sums of the squared deviations for the three groups are 2, 
2, and 6, and the sum across the three groups is 10. 

Sum of Squares for between-Group Variation 

The between-group variation examines how each of the groups varies from the grand 
mean. For this calculation, we use group means as representative of the individual 
groups. The between-group variation examines the variation of the group means 
from the grand mean. In Table 6-3, the mean for group 1 is two less than the grand 
mean. The sum of the deviations around the grand mean is (as always) zero, and the 
squared deviations are 4, 0, and 4, respectively. Because the weight of the difference 
of any mean from the grand mean is influenced by the number of the scores in the 
group, we weight the squared deviations by the number in the group. The weighted 
squared deviations are then summed to provide the between sum of squares (32). 

In summary, these three sums of squares define the three different kinds of vari­
ation that exist when subjects are members of different groups and are measured on 
a single variable. They include the total variation of each of the scores around the 
grand mean, the variation of scores within their respective groups, and the deviation 
between groups measured by the deviation of group means from the grand mean. 

DISPLAYING THE RESULTS: SUMMARY OF ANALYSIS OF VARIANCE 

The results of the calculations leading to the F ratio are summarized in a table form 
that is standard for presenting ANOVA results. This pr_esentation of the results is 
called the summary of ANOVA table. In Table 6-3, SS stands for sum of squares, df 
for degrees of freedom, MS for mean square, F for the statistic generated, and p for 
the probability level. 
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Degrees of Freedom 

The djfor the between-group variance is equal to the number of groups minus one. 
In our example, this is 3 - 1 = 2, The df for the within-group variance is equal to 
the total number of subjects minus the number of groups, or 12 - 3 = 9. The dffor 
the total variance is equal to the number of subjects minus one (12 - 1 = 11). The 
mean square is the sum of squares divided by its df Thus, the between-group sum 
of squares, 32, divided by 2 results in a mean square of 16. 

Testing the Difference among Groups: The F Ratio 

To determine whether the between-group difference is great enough to reject the 
null hypothesis, we compare it statistically to the within-group variance. The F rep­
resents the ratio of between to within variance and is calculated as the between 
mean square divided by the within mean square, or 16/1.11 = 14.41. The Fvalue is 
compared to the values obtained when the null hypothesis is true, and the scores 
are randomly selected from one population. To make the interpretation, we use the 
table that presents the F distributions (Appendix D). We locate the critical values for 
comparison by using the df for the between and within mean squares. 

In the example, the between df was 2 and the within df was 9. We locate the 
between df on the row across the top of the table, and we locate the within df on the 
column on the left side of the table. With these points as coordinates, we locate two 
critical values for F. The top value (in light print) is 4.26. This is the value required to 
reject the null hypothesis at a probability level of 0.05 (given a one-tailed test). The 
value below (in bold print) is 8.02, the value required to reject the null hypothesis 
at the 0.01 level. The value of 14.41 is greater than the value required to reach an 
alpha of 0.01. Therefore, we can reject the null hypothesis at the 0.01 level. We say 
we have reached a probability level of "less than 0.01." In summary, we obtained an 
F value of 14.41. We therefore rejected the null hypothesis that there were no dif­
ferences between the groups, and we concluded that the groups were different. 

In other standard presentations of ANOVA summary tables, the within variance is 
sometimes called the errorvarianceorerrorterm. This terminology reflects the assump­
tion of the AN OVA that the within difference is sampling error or random difference. 

In addition to the summary table, often it is helpful to include a table in your 
results section that shows the means and standard deviations for the scores of each 
group. One can then see which group scored higher and by how much. Without fur­
ther analysis, however, we do not know which pairs of means differ significantly. A 
posthoc analysis would allow us to compare group 1 with group 2, group 1 with 
group 3, and group 2 with group 3. Before discussing such contrasts in detail, how­
ever, we first present another example with a computer analysis of the data. 

ONE-WAY ANALYSIS OF VARIANCE 

We have one independent categorical variable with n levels and one continuous 
dependent variable that meets the assumptions, that is that it is normally distributed 
and that the variance is equal across the groups. To demonstrate, we used data from 
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One way 

Descrlptlves 

CONCERTS 

95% confidence 
inteiVal for mean 

N Mean Std. Std. Lower Upper Minimum Maximum 
deviation error bound bound 

Private home 195 5.4103 4.26879 .30569 4.8073 6.0132 .00 10.00 

Apartment 86 5.6047 4.37447 .47171 4.6668 6.5425 .00 10.00 

Elder housing 139 4.1079 4.56466 .38717 3.3424 4.8735 .00 10.00 

Total 420 5.0190 4.42704 .21602 4.5944 5.4437 .00 10.00 

Test of Homogeneity of Variances 

CONCERTS 

Levene 
scatistic dfl dl2 Sig. 

2.218 2 417 .110 

AN OVA 
CONCERTS 

Sum of 
squares df Mean square F Sig. 

Between groups 174.729 2 87.364 4.533 .011 

Within groups 8037.119 417 19.274 
Total 82!1.848 419 

RGURE 6-4. Computer output of one-way analysis of variance with posthoc comparisons. 
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Posthoc Tests 
Multiple Comparisons 

Dependent Variable: CONCERTS 
Scheffe 

95% confidence inteiVal 
Mean 

difference 
(I) Living receded (J) Living recoded (I-J) Std. error Sig. Lower bound Upper bound 
Private home Apartment -.1944 .56829 .943 -1.5904 1.2016 

Elder housing 1.3023(") .48734 .02~ .1052 2.4995 
Apartment Private home .1944 .56829 .943 -1.2016 1.5904 

Elder housing 1.4967(") .60231 .047 .0171 2.9763 
Elder housing Private home -1.3023(") .48734 .029 -2.4995 -.1052 

Apartment -1.4967(") .60231 .047 -2.9763 -.0171 

• The mean difference is significan[ at lhe .OS level. 

FIGURE 6-4. (Continued) 

Dr. Wood's study on promoting breast self-examination (1997). The housing of her 
subjects can be described by three categories: private home, apartment, and elder 
housing. Subjects were asked to rate the desirability of certain things that could be 
offered to them for participation in the study. One choice was concert tickets. Par­
ticipants rated this choice from 0 = undesirable to 10 = very attractive. The research 
question is whether the three housing groups differ significantly in their rating of the 
desirability of receiving concert tickets. 

COMPUTER ANALYSIS 

To answer the research question, the data were submitted to analysis by the one-way 
program in SPSS for Windows. This program handles one-way ANOVA (one inde­
pendent variable) and posthoc tests necessary to compare pairs of means. Figure 6-4 
contains the computer output. Author comments have been added to ease interpre­
tation and appear in a shaded box. 

The dependent variable is the rating of the desirability of concert tickets, and the 
independent variable is housing group with three levels: private home, apartment, 
and elder housing. The descriptive statistics are given first. The groups are somewhat 
unequal with the smallest number living in apartments (86) and the largest number 
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living in private homes (195). Looking at the mean scores, we see that on a scale of 
0 to 10, the groups are about in the middle. The elder housing group has the lowest 
mean rating (4.11), and the apartment group gave it the highest rating (5.60). The 
standard deviations and standard errors are listed. Based on the standard errors, 95% 
confidence intervals (CI) also are listed. For the private home group, the 95% CI is 
4.8073 to 6.0132. This means that if 100 similar samples were drawn, in 95 out of 100 
tests, the mean would fall between 4.8 and 6.0. The minimum and maximum scores 
for each group also are listed. For each group, the entire potential range of scores 
was covered, that is, all three groups had low scores of zero and high scores of 10. 

The assumption of homogeneity of variance is met (p = .110). The ANOVA 
summary table is typical of what is reported in the literature. The variance is 
reported as between groups, within groups, and total. "Between groups" indicates 
the differences among the three groups, "within groups" is the error term, and "total" 
is the total variance in the dependent variable. 

Sums of squares are reported first. Because there are three groups, df= 2 (num­
ber of groups minus one). Dividing the sum of squares by its associated df gives the 
mean square value. For example, for between groups, 174.729/2 = 87.364. The F is 
the ratio of between to within variance, or 87.364/19.274 = 4.533. This number is 
significant at the .011 level. 

Because the overall F is significant, we want to know which pairs of means are 
significantly different. The Scheffe posthoc procedure, which will be described in 
the next section, was requested. All possible pairwise comparisons are tested. We 
see that there is a significant difference between the elder housing group and both 
of the other two groups. For the comparison with the private home group p = .029 
and for the apartment group p = .047. The private home and apartment groups did 
not differ from each other (p = .943). Looking at the means to describe the results, 
we would say that the group that lived in elder housing rated the desirability of con­
cert tickets (mean = 4.11) significantly lower than ihe private home group (mean = 
5.41) and the apartment group (mean= 5.60). 

MULTIPLE GROUP COMPARISONS 

Two types of comparisons can be made among group means. The most commonly 
reported are posthoc (after the fact) comparisons and a priori (planned) compar­
isons, based on hypotheses stated before the analysis. 

Posthoc Tests 

When a significant F test is obtained, the null hypothesis that all the groups are 
from the same population or that all the populations are equal is rejected; that is, 
we can state that there is a difference among the groups. However, when more 
than two groups are being compared, we cannot detenltine from the F test alone 
which groups differ from each other. In other words, a significant F test does not 
mean that every group in the analysis is different from every other group. Many 
patterns of difference are possible. Some of the groups may be similar, forming a 
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cluster that is different from another select group; depending on the number of 
groups being compared, there may be wide deviation between each pair of the 
groups. 

To determine where the significant differences lie, further analysis is required. 
____ Therefore,_we....IIlust.compare.group .. means. However,.if.we decide to use the stan­

dard t test, we are confronted with the pas ;ibility of an increased rate of type 1 
errors. To prevent this, secondary analyses following the computation of the F ratio 
are available to pinpoint the source of the diflerence. 

Many techniques exist. A complete discussion of each is beyond the scope of 
this book, but the aim of all is to decrease the likelihood of making a type I error 
when making multiple comparisons. For m<''e details on posthoc tests following 
ANOVA, we suggest Klockars and Sax (1991), and Toothaker 0993). 

The Scheffe test is reported frequently. ',be formula is based on the usual for­
mula for the calculation of a t test or F ratio. The critical value used for determining 

· whether the resulting F statistic is significant is different. In other words, the F asso­
ciated with comparing the two means is the same as if they had been compared in 
the usual ANOVA, but the critical value is changed based on the number of com­
parisons. The new critical value is simply the usual value multiplied by the number 
of groups being compared minus one. In our example in Fig. 6-4, the critical value 
at the 0.05 level with 2 and 417 dfis 3.02 (see Appendix D). Multiplying that by 2 
(the number of groups minus one) results in a critical value of 6.04. Thus, the criti­
cal value is twice as stringent when making all possible comparisons among three 
groups than it was for the overall analysis. The Scheffe test is stringent, but it can be 
used with groups of equal and unequal size. 

The Bonferroni correction has been explained previously. The desired alpha is 
divided by the number of comparisons. For example, with an alpha of 0.05 and four 
comparisons, the significance level would have to be equal to or less than 0.0125 for 
the paired comparison to be significant. 

The Duncan test is computed in the same way as the student Newman-Keuls, 
but the critical value is less stringent. 

The Least Significant Difference test is equivalent to multiple t tests. The modi­
fication is that a pooled estimate of variance is used rather than variance common 
to groups being compared. 

Student Newman-Keuls is similar to Tukey's honeetly significant difference (HSD) 
but the critical values do not stay the same. They reflect the variables being compared. 

Tukey's honestly significant difference (HSD) is the most conservative compari­
son test and as such is the least powerful. The critical values for Tukey remain the 
same for each comparison, regardless of the total number of means to be compared. 

Tukey's wholly significant difference uses critical values that are the average of 
those used in Tukey's HSD and Student Newman-Keuls. It is therefore intermediate 
in conseiVatism between those two measures. 

EXAMPLE FROM THE LITERATURE 

Look again at Table 6-1 that contains the table from Anderson and Helms 0998). They 
used the Scheffe test for pairwise comparisons. Their F ratio ( 48.11) was significant at 
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p < .0001. It was, therefore, appropriate to use a posthoc test. It should be noted that 
even when the overall F is significant, it is possible that none of the pairwise com­
parisons will be significant. This is because the posthoc tests protect against a type I 
error by being more stringent. Given the four groups of hospitals, six posthoc com­
parisons could be made. The authors tell us that large hospitals differed significantly 
from the other three, as did the very large hospitals. That means that the only com­
parison that was not significant was between small and medium hospitals. Here is the 
breakdown of possible comparisons. An asterisk indicates significant differences. 
Take a moment to look at Table 6-I and this outline to be sure you understand it. 

Comparisons by hospital size: 

Small with Medium 
Small with Large• 
Small with Very Large" 
Medium with Large• 
Medium with Very Large' 
Large with Very Large' 

Basically, since Large and Very Large are reported as significantly different from all 
other groups, any comparison that they are in is significant. 

Planned Comparisons 

Planned comparisons, or a priori contrasts, are based on hypotheses stated before 
data are collected. When you hypothesize ahead of time, you can use more power­
ful statistical tests. One way to do this is through the development of prespecified 
contrasts that are orthogonal to each other. Orthogonal means that the hypothesis 
tests are unrelated to each other; that is, knowing one result tells you nothing about 
the other. For an overview of planned comparisons versus omnibus tests, refer to Wu 
and Slakter (1990). Here we demonstrate how orthogonal contrasts can be developed 
and analyzed in SPSS for Windows. To have comparisons that are independent, only 
n - I comparisons can be made. In our three-group·living arrangements example 
(Fig. 6-4), therefore, there could be only two orthogonal contrasts. In our example, 
we might want to test the hypothesis that the two independent living (private home 
and apartment) groups will score significantly higher on desire for concert tickets 
than the elder housing group and that there will be no difference between the apart­
ment and private home groups. Table 6-4 contains the vectors necessary to code such 
a contrast. On vector I (VI), subjects in both independent living groups receive a -I, 
and the elder housing subjects receive a 2. This contrast tests the difference between 
the desirability of a concert ticket mean score for all the independent living subjects 
and the mean for the elder housing subjects. The second contrast is given in vector 
2 (V2). The two independent living groups are compared. The elder housing group 
is not considered in the second contrast. (Note, in building the contrasts, you must ' 
list the groups in the order in which they are in the dataset. In our dataset, the val- I 
ues are I = Private home, 2 = Apartment, and 3 = Elder housing.) . . 
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I 
. -

TABLE 6·4 Orthogono/ Codmg 

Vectors 

Groups VI \12 

Private home -I I 
Apartment -I -I 
Elder housing +2 0 

To ensure that hypothesized contrasts are orthogonal, three tests must be applied: 

1. There must be only n - 1 contrasts. 
2. The sum of each vector must equal zero. In the example, the sum of VI is 

(-1) + (-1) + 2 = 0, and the sum ofV2 is 1 + (-1) + 0 = 0. 
3· The sum of the cross-products must equal zero. In the example, ( -1 X 1) + 

( -1 X -1) + (2 X 0) + = 0. 

Table 6-5 provides other examples of possible contrasts, given three groups. Are 
they all orthogonal? The vectors X1 and X2 reflect an orthogonal contrast, as do the 
vectors Y1 and Y2. Vectors 21 and 22 ·do not reflect an orthogonal contrast; group 
1 is compared to group 2 and to group 3. The sum of the cross-products does not 
equal zero (-1 X 1)- (0 x -1) + (1 X 0) = -1. 

We now demonstrate the use of the contrasts specified in Table 6-4 in a com­
puter analysis of these data. See Fig. 6-5 for the computer output of the a priori 
contrasts. In the first analysis (see Fig. 6-4), we requested a posthoc test and deter­
mined that the elder housing group scored significantly lower than the other two 
groups. 

In the analysis in Fig. 6-5, we are testing a priori orthogonal contrasts. Since the. 
Descriptives, Test of Homogeneity of Variance, and ANOVA table are the same as 
those in Fig. 6-4, they are not repeated here. Author's comments have been added 

I TABLE 6·5 Contmsts 

Pairs o(Vectors 

Groups XI X2 Yl Y2 Z1 Z2 

I 2 0 -I I -I I 

2 -I I 2 0 0 -I 

3 -I -1 -I -I I 0 
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Contrast Coefficients 

Type of living quarters 

Contrast Private home Apartment Elder hou~ing 
I -I -I 2 

2 I -! 0 

Contrast Tests 

Value of 
Contrast Contrast Std. Error ' df Sig. (2-tailed) 

Coupon for Assume equal I -2.7991 . 93680 -2.988 417 .003 . 
concerts variances 2 -.1944 .56829 -.342 417 .732 

Does not assume I -2.7991 .95685 -2.925 259.302 .004 
equal variances 2 -.1944 .56210 -.346 159.093 .730 

AGURE 6-5. Computer output containing a priori contrasts. 

to increase clarity and appear in a shaded box. This is a more powerful analysis; that 
is, it is more likely to find a significant difference among groups. This is because the 
contrasts are stated a priori and are restricted to orthogonal contrasts. In the case of 
posthoc tests, the overall F value must be significant before we can test pairwise 
comparisons. When using orthogonal contrasts, these contrasts can be examined 
even when the overall F is not significant. The first contrast (read across the row) 
compares the means of the two independent living groups with the elder housing 
group. The second contrast compares the two independent living groups. 

The equal variance estimate is appropriate because the assumption of homogene­
ity of variance has been met (see Fig. 6-4, Levene test,p = .110). We hypothesized that 
the first contrast would be significant, but that the second would not. Our hypotheses 
have been supported. The first contrast is significant (p = .003), thus the independent 
living groups did differ significantly from the elder housing group. 

Looking at the means, we see that as hypothesized the independent living groups 
rated the desirability of concert tickets significantly higher than did the elder housing 
group. The private home and apartment groups did not differ significantly (p = .732). 
In this example, the a priori and posthoc tests resulted in the same findings. This is not 
always the case. 

A priori contrasts must be based on firm theoretical grounds. 

T1 
I 
I 
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EXAMPLE FROM THE UTERATURE 

In a study of Australian nurses' experiences and attitudes in the "do not resuscitate" 
decision, Manias (1998) used a priori planned contrasts, although not orthogonal 
contrasts, to test specific contrasts. Nurses from four practice areas (intensive care, 
coronary care, acute medical, acute surgical) were compared on their experiences in 
decision making. The a priori contrasts showed that intensive care nurses consid­
ered themselves to be less effective in influencing a "do not resuscitate" order com­
pared to the other three groups. 

One-way ANOVA is used to compare the means of two or more groups. When the 
overall F is significant and more than two groups are being compared, posthoc tests 
are necessary to determine which pairs of means differ from each other. Also, when 
directional hypotheses are appropriate, a priori contrasts may be specified and 
tested. 

ApplicatiomExercises·anJ Results . · 

Exercises 

Run the appropriate analyses to answer the question and test the hypothc.:ses. Write a descrip­
tion of the results. 

1. Do the three smoking groups differ significantly in their quality of life during the past month? 

2. Test the folJowing hypotheses: 

a. The smoking group will score significantly lower on quality of life during the past 
month than the other two groups. 

b. There will be no significant difference in quality of life between the group that quit 
smoking and the group that never smoked. 

Results 

1. To answer this question, a one-way ANOVA was run and the Scheffe posthoc test was 
requested. Exercise Fig. 6-1 contains the output. 

Looking at the descriptives, we see that the group that is still smoking had the low­
est mean score (4.01) on the 6-point scale that ranged from a low of 1 (very dissatisfied, 
unhappy most of the time) to a high of 6 (extremely happy, could not be more pleased). 
The other two groups' scores were almost identical (4.31 and 4.30). The assumption 
of homogeneity of variance has been met (p = .300). The overall F is not significant 
(p = .067). Since the overall F is not significant, it is not appropriate to .report the Scheffe 
test resulr.s. 

2. One-way ANOVA with a priori contrasts was used to test the two hypotheses. Since the 
overall analysis is lhe same as the one in Exercise 1, Exercise Fig. 6-2 contains only the a 
priori contrasts. From Exercise 1, we know chat the assumption of equality of variance has 
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One Way 

Descriptives . 

Quality of life in past month 

95% confidence 

interval for mean 

N Mean Std. Std. Lower Upper 
deviation error bound bound Minimum Maximum 

Never smoked 432 4.31 1.046 .050 4.21 4.40 I 6 

Quit smoking 185 4.30 1.018 .075 4.15 4.44 I 6 

Still smoking 78 4.01 1.026 .116 3.78 4.24 I 6 

Total 695 4.27 1.039 .039 4.19 4.35 I 6 

Test of Homogeneity of Variances 

Quality of life in past month 

Levene 

statistic dfl df2 Sig. 

1.205 2 692 .300 

ANOVA 

Quality of life in past month 

Sum of 
squares df Mean square F Sig. 

Between groups 5.843 2 2.921 2.720 .067 
Within groups 743-302 692 1.074 
Total 749.145 694 

EXERCISE AGURE 6-1. One-way analysis of variance with posthoc test, Exercise 1. 

been met (Levene's p = .300), and the overall F is not significant (p = .067). The first con­
trast tests whether the still-smoking group differs significantly from the other two groups. 
The second contrast tests whether the two nonsmoking groups differ from each other. 

Because the homogeneity of variance assumption has been met, we use the equal 
variance contrasts. We would report that the first hypothesis was supported (p = .000). 
The group that is still smoking scored significant1y lower on their quality of life score 
(mean = 4.01) than the other two groups combined. The second hypothesis was also sup­
ported (p = .928). There was no significant difference between the two nonsmoking 
groups on their reported quality of life. Thus, the a priori results indicate significant differ­
ences, whereas the posthoc did not. 
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Contrast Coefficients 

Smoking history 

Contrast Never smoked Quit smoking Still smoking 

I I -I 2 

2 I -I 0 

Contrast Tests 

Value of 
Contrast Contrast Std. error t df Sig. (2 tailed) 

Quality of life Assume equal I 8.03(a) .252 31.913 692 .000 
in past month variances 2 .01 .091 .091 692 .928 

. Does not assume I 8.03(a) .249 32.246 101.477 .000 
equal variances 2 .01 .090 .092 356.918 .927 

a The sum of the contrast coefficients is not zero. 

EXERCISE AGURE 6-2. One-way analysis of variance with a priori contrasts, Exercise 2. 
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