Central nervous system

Dr Heyam Awad

FRCPATH

2017

LECTURE 2: disturbed fluid balance and increased intracranial pressure

Topics to be covered:

- Increased intracranial pressure.
- Brain edema
- Hydrocephalus
- Herniation
- Cerebral ischemia

ILOs

- Understand causes and symptoms of increased intracranial pressure.
- Define cerebral edema and know its types and causes.
- Define hydrocephalus and know its types and causes.
- Define herniation and know its types and complications
- Understand autoregulation of blood flow in the brain
- List causes of hypoxia and ischemia
- Understand outcomes of global brain ischemia
- Apply the above knowledge in clinical cases.

The cranium...

- The brain is enclosed within the skull, which is a rigid box that protects it.
- In adults, skull bones cannot expand

So if the material within the cranium increases.. Pressure will

increase= increased intracranial pressure

What's inside the cranium?

• ROUGHLY: 80% brain tissue (including fluid; around 75%)

: 10% blood

: 10% CSF (cerebrospinal fluid)

IF any of these components increases, the intracranial pressure increases.

OK, so what is intracranial pressure (ICP)???

- It is the pressure inside the skull and is measured in millimeters of mercury
- at rest, it is normally 7–15 mmHg for a supine adult.
- The upper limit of ICP is 20–25 mm Hg
- If pressure in the cranium is higher than this upper limit= increased intracranial pressure (= intracranial hypertension.

Causes of increased intracranial pressure

- mass effect: brain tumor, hematoma, or abscess.
- generalized brain swelling: ischemic-anoxia states, hypertension
- increase in venous pressure : heart failure
- obstruction to CSF flow and/or absorption or increased CSF production: hydrocephalus.
- Idiopathic or unknown

Increased Intracranial Pressure

- ✓ Causes
 - ✓ Tumors
 - Accumulation of fluid within the ventricular system
 - ✓ Bleeding
 - ✓ Edema in cerebral tissues
- ✓ Early signs and symptoms are often subtle and assume many patterns

clinical presentation according to severity:

Brain edema= cerebral edema

- = accumulation of excess fluid within the brain parenchyma.
- Two types: vasogenic and cytotoxic edema.. Usually coexist

Vasogenic edema

- Due to disruption of blood brain barrier.
- So: shift of fluids from vessels to brain tissue.
- Lymphatic vessels are rare in the brain.. So there is little or no resorption of excess edema fluid.
- Can be generalised (due to hypoxia) or localised (due to inflammation or tumors)

Cytotoxic edema

- Due to neuronal or glial cell membrane injury.
- Causes: toxins or hypoxia.
- Here fluid moves from cells to interstitial tissue.

morphology

• With edema, the brain becomes swollen.. And its weight increases.

• The normal adult human brain weighs on average about **1.2–1.4 kg** ,or about **2% of total body weight**, although there is substantial individual variation.

Edema causes flat gyri and narrow sulci

Brain edema

- Increased CSF within ventricles.
- Caused by overproduction or decreased resorption of CSF.
- Overproduction: rare, due to choroid plexus tumors.
- Decreased resorption.. Can be localised or generalised.

Localised: noncommunicating hydrocephalus.

• Generalised: communicating hydrocephalus.

- In infancy, before closure of the cranial sutures, the head enlarges.
- After closure of the cranial sutures: increased intracranial pressure occurs. Of course there is no increase in head circumference

herniation

- Increased volume of tissue inside the skull.. Increased intracranial pressure which causes focal expansion of the brain tissue .
- Because the cranial vault is subdivided by rigid dural folds (falx and tentorium).... The expanded brain tissue is displaced in relation to these folds.
- Expansion: herniation

herniation

- Subfalcine = cingulate
- Transtentorial = uncinate
- Tonsillar.

herniation

© Elsevier. Kumar et al: Robbins Basic Pathology 8e - www.studentconsult.com

Cingulate herniation

- -cingulate gyrus displaced under edge of falx
- -Can cause compression of anterior cerebral artery

Transtentorial herniation

- Medial aspect of temporal lobe compressed against the free margin of the tentorium.
- Third cranial nerve compressed.. Dilated pupil, impaired ocular movement on the side of the lesion
- Posterior cerebral artery can be affected.. Ischemic injury to tissues supplied by it including visual cortex.

Tonsillar herniation

- Displaced cerebellar tonsils through foramen magnum
- Brain stem compression... respiratory and cardiac centres in medulla compromised.
- LIFE THREATENING

Hypoxia and ischemia

- Brain is highly oxygen dependent.
- Brain 2% of body weight but receives 15% of cardiac output
- 20% of total body oxygen consumption.
- Autoregulation of vascular resistance allows stability of cerebral blood flow over a wide range of blood pressures and intracranial pressure.
- If blood pressure very low (systolic less than 50)... hypoxia

Autoregulation of Cerebral Blood Flow

Brain hypoxia

- Functional hypoxia.
- ischemic hypoxia

Functional hypoxia

- Low partial pressure of oxygen: high altitude
- Impaired oxygen carrying capacity: anaemia and CO poisoning
- Decreased oxygen use by tissues: cyanide poisoning

Functional hypoxia

Ischemic hypoxia

Hypo-perfusion due to hypotension or vascular obstruction

• Ischemia can be global or focal

 Focal ischemia causes infarctions and this will be discussed in the next lecture.

Global cerebral ischemia

Occurs due to severe hypotension, systolic below 50mm Hg:

- Cardiac arrest
- Shock
- Severe hypotension

• Outcome depends on **severity** and **duration** of insult

Global ischemia

- Neurons more susceptible to hypoxic injury than glial cells.
- Most susceptible neurons: pyramidal cells of hippocampus and neocortex + Purkinje cells of the cerebellum

ischemia

- If mild: transient confessional state
- severe: neural death, if survive: severely impaired neurologically
- Severest forms result in brain death.

Morphology of reversible global ischemia

- Swelling
- Wide gyri
- Narrow sulci
- Poor grey white matter demarcation

Irreversible global ischemia can cause brain death

- Diffuse cortical injury with flat EEG (isoelectric EEG)
- Brain stem damage: No reflexes and no respiration
- If on mechanical support: autolysis of brain= respirator brain

/

Suggested reading about brain death...for those who are interested

- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2772257/
- Also a pdf is downloaded in my webpage.... This is an interesting read I encourage you to have a look!!

