# **Hematopoietic Growth Factors**

Erythropoietin (Epoetin alfa).

- Granulocyte colony-stimulating factor(G-CSF).
- Granulocyte-macrophage colony-stimulating factor (G-CSF).
- Interleukin-11 (IL-11).
- Thrombopoietin.

## **Hematopoietic Growth Factors**

Regulate the proliferation and differentiation of hematopoietic progenitor cells in the bone marrow.

 Useful in hematologic as well as nonhematologic conditions, potential anticancer and antiinflammatory drugs.

- 34-39 kDa glycoprotein.
- Was the first isolated growth factor.
- Originally purified from urine of patients with severe anemia.
- Recombinant human erythropoietin (rHuEPO, or Epoietin alfa) is produced in a mammalian cell expression system.
- Half-life after iv administration is 4-13 hours.
- It is not cleared by dialysis.
- Darbepoetin alfa has longer half life.

- Produced in the kidney in response to hypoxia through increased rate of transcription of the gene.
- Needs active bone marrow (no deficiency, no primary bone marrow disease and no suppression by drugs or chronic diseases).
- Normal serum level 20 IU/L.
- Elevated in most of anemias (up to thousands) but lowered in anemia of chronic renal failure.

- Stimulates erythroid proliferation and differentiation by interacting with specific receptors (JAK/STAT cytokine receptor) on red cell progenitor.
- Releases reticulocytes from the bone marrow.

## **Indications:**

- 1. Anemia of chronic renal failure:
  - These are the patients most likely to benefit from treatment.
  - 50-150 IU/kg IV or SC three times a week.
  - Failure to respond is usually due to iron or folic acid deficiency.

#### **Indications:**

- 2. Primary bone marrow disorders and secondary anemias: aplastic anemia, myeloproliferative and myelodysplastic disorders, multiple myeloma and bone marrow malignancies. Also anemia of chronic inflammation, AIDS and cancer.
  - Response is better with low baseline erythropoietin levels.
  - Patients require higher doses(100-500 IU/kg).
  - Response is generally incomplete.

## **Indications:**

- 3. Anemia of zidovudine treatment.
- 4 Anemia of prematurity.
- 5. After phlebotomies for autologous transfusion for elective surgery.
- 6. Iron overload.
- 7. Unethically, used by athletes.

### **Toxicity:**

- Due to rapid increases in hematocrit and hemoglobin: hypertension and thrombotic complications.
- Allergic reactions are infrequent and mild.

- Originally purified from cultured human cells.
- rHuG-CSF "Filgrastim" 1991:
  - O Produced in a bacterial cell expression system.
  - 175 amino acids, 18 kD mol. wt.
  - Has a half life of 2-7 hours.
  - Pegfilgrastim = Filgrastim covalently conjugated with polyethylene glycol. Injected once per chemotherapy cycle.

### rHuGM-CSF "Sargramostim":

- O Produced in a yeast cell expression system.
- 127 amino acids, 15-19 kD mol. wt.
- Has a half life of 2-7 hours.

## G-CSF:

- Works on (JAK/STAT receptors.
- Stimulates proliferation and differentiation of progenitors committed to the neutrophil lineage.
- Activates the phagocytic activity of mature neutrophils and prolongs their survival in the circulation.
- Mobilizes hemopoietic stem cells into the peripheral circulation.

## **GM-CSF:**

- Has broader actions. Also works on JAK/STAT receptors.
- Stimulates proliferation and differentiation of early and late granulocytic progenitor cells as well as erythroid and megakaryocyte progenitors.
- With interleukin-2, also stimulates T-cell proliferation.
- Locally, it is an active factor of inflammation.
- Mobilizes peripheral blood stem cells, but less than G-CSF.

### **Clinical Applications of Myeloid Growth Factors**

# Cancer Chemotherapy-Induced Neutropenia:

- Granulocyte transfusion is not practical.
- G-CSF accelerates neutrophil recovery, leading to reduced episodes of febrile neutropenia, need for antibiotics and days of hospitalization, but do not improve survival.
- G-CSF is reserved for risky patients.
- GM-CSF can produce fever on its own.
- They are safe even in the postchemotherapy supportive care of patients with AML.

### **Clinical Applications of Myeloid Growth Factors**

- Congenital neutropenia.
- Cyclic neutropenia.
- Myelodysplasia.
- Aplastic anemia.

### **Clinical Applications of Myeloid Growth Factors**

## **Autologous Stem Cell Transplantation:**

- High dose chemotherapy regimens produce extreme myelosuppression, which is counteracted by reinfusion of the patient's own hematopoietic stem cells which are collected before the chemotherapy.
- Allogenic Bone Marrow Transplantation.
- Mobilization of peripheral blood stem cells (PBSCs).
  - Patients or donors are given GM-CSF (5-10 mcg/kg/day) for 4 days, then leukapheresis, CD34 is used as a marker for the stem cells. At least 5x10<sup>6</sup> CD34 cells/kg should be reinfused to ensure effective engraftment.

## **Toxicity of Myeloid Growth Factors**

- Bone pain.
- Fever, malaise, arthralgia, myalgia.
- Capillary Leak Syndrome: peripheral edema, pleural or pericardial effusions.
- Allergic reactions.
- Splenic rupture.

### Interleukin-11 (IL-11):

- 65-85 kDa protein.
- O Produced by fibroblasts and stromal cells in the bone marrow.
- Half life is 7-8 hours after sc injection.

### Oprelvekin:

- Is the recombinant form.
- O Produced by expression in *E.coli*.

### Interleukin-11 (IL-11):

- Acts through a specific receptor.
- Stimulates the growth of multiple lymphoid and myeloid cells.
- Stimulates the growth of primitive megakaryocytic progenitors.
- Increases the number of peripheral platelets and neutrophils.

### **Clinical Applications of IL-11:**

Thrombocytopenia

Platelets transfusion is an alternative.

Approved for the secondary prevention of thrombocytopenia in patients receiving cytotoxic chemotherapy for treatment of nonmyeloid cancers.

### **Clinical Applications of IL-11:**

- Does not appear to have an effect on leukopenia caused by myelosuppressive chemotherapy.
- Given by SC injection, 50mcg/kg/day for 2-3 weeks after chemotherapy. Or, until platelet count rises to <50,000 cells/μl.

### **Thrombopoietin:**

- It is still an investigational agent.
- 65-85 kDa glycoprotein.
- Recombinant form is produced by expression in human cells.
- Independently stimulates the growth of primitive megakaryocytic progenitors.
  - Also stimulates mature megakaryotes.
  - Activates mature platelets to respond to

# **Toxicity:**

 Fatigue, headache, dizziness, anemia, dyspnea, transient atrial arrhythmias and hypokalemia.