Lec. 3 / Dr. Diala

last 2 slides of **slide 1**:

- if we have a deficiency in any of the enzymes of urea cycle, we'd have it impaired resulting in accumulation of ammonia and increase its conc. in the blood that's mainly affects the CNS.
- -acquired hyperammonemia is due to destruction of hepatocytes.
- -congenital hyperammonemia usually follows AR (autosomal recessive) inheritance pattern, except OTC deficiency which is x-linked and more predominant in males.
- an example of synthetic compounds that bind covalently to AAs is phenylacetate that binds to glutamine.

Slide 2:

Slide 1 +2:

We except different pathways to the left molecules of AAs after removing the nitrogen part because we have different R-chains, and depending on the final product of the catabolism process AAs are categorized into 3 groups: glucogenic, ketogenic and both.

Ketogenic AAs are Leucine and Lysine.

Both: produces different types of compounds with several pathways to degrade or to be metabolized. (the aromatic AAs: { Tyr, Trp, Phe} and ILe)

As we have 7 intermediates we can catatgorize the AAs into 7 groups depending on the end products of their metabolisim .

Slide 3 : <u>AAs that produce OXALOACETATE</u> : <u>Asn and Asp</u> (Asn is deaminated to Asp which is transaminated to oxaloacetate)

Slide 4 : AAs that form α -ketoglutarate via glutamate which can be deamintaed to an alphaketo acid . (glutamine-Gln-, Pro , Arg , His)

- Pro is converted to Glu by opening the cycle-structure.

Slide 5:

-His has an imidazole group in its R-chain that makes it really different from Glu, so it has to be converted and modified to a similar structure. First step deals with the amino group only to produce Urocanic acid that go through multiple steps to open the ring and break the double bond resulting in a molecule called FIGIu which is very close to Glu (this step is mediated by tetrahydrofolate –active form of B9)

slide 6: none

slide 7:

Amino acids that form pyruvate: Ala, Ser, Gly, Cys, Thr

-Gly has two metabolic pathways:

- a) oxidation: that ends up with CO2 and NH3
- b) conversion to serine which is deaminated with removal of H2O to produce pyruvate.

Slide 8:

Cysteine has a very close structure to serine (there is a sulfur group instead of hydroxyl group)

cystine is reduced to cysteine in oxidation rxn by oxidation of NADH to NAD+

threonine has an OH-group on the middle carbon

slide 9:

Amino acids that form fumarate: Phe, Tyr

-Phe hydroxylase adds hydroxyl group to produce tyrosin, so Phe is an essential AA

Slide 10:

<u>Amino acids that form succinyl CoA</u> (a TCA cycle intermediate and glucogenic compound) : Val, Ile, Thr,Met

-Valine and isoleucine are branched-chain amino acids. Remember that in alpha-helix there are factors that constrict the formation of the helix as the presence of 2 branched-chain AAs next to each other that branch quickly and take more space leads to what is called steric hindrance.

Slide 11:

Met :has a sulfur atom in between 2 carbons, it is a non-polar essential AA used in protein synthesis as a first AA. It can be used for production of other AAs that contain sulfur as cysteine(non-essential).

-SAM: methyl carrier (donor), is used for synthesis of many compounds or modifications of nucleic acids specifically the methylation of DNA. (methylation turns off genes) slide 12:

Homocysteine has 2 pathways:

- a) in presence of B12 and methyl-tetrahydrofolate is converted to Met and tetrahydrofolate.
- b) in presence of B6 is converted to cysteine

slide 13:none

slide 14:

<u>Amino acids that form acetyl CoA or acetoacetyl CoA :</u> Leu, Ile, Lys, Trp .Note: {Phe and Tyr produce acetoacetate}

slide 15:

Catabolism of the branched-chain amino acids Ile, Leu, Val

-these AAs are metabolized to alpha-keto acids that are further metabolized to derivatives of A-CoA and acetoacetyl CoA to produce ketone bodies.

Notes related to folic acid(folate) discussed through all the lecture :

- -folic acid(B9): need to be activated after ingestion with food into tetrahydrofolate(THF) and even tetrahydrofolate can be activated into other forms to contribute the reactions.
- -folic acid increases the fertility so women take it if they are planning to get pregnants before 2 months . Furthermore, pregnants need it to reduce the risk of neural tube defects in the fetus .
- -around 25% of Jordanian people have a mutation in the gene that codes the enzyme that converts the folic acid into its active form , so that active form is added to food as supplements to avoid accumulation of the inactive form which may contributes to other diseases.
- -found especially in dark green leafy vegetables .

- THF can carry the carbon in many forms:

a)carbon atom as formyl(H-c=O), for purine synthesis

b)methenyl(CH), the carbon connected to the structure by 2 bonds (single and double), for synthesis of other molecules.

c)methylene(CH2), the carbon is connected via 2 single bonds, for synthesis of some derivatives od nucleic acids

d) CH3 (methyl), for methionine degradation pathway.

Done by : Abdullah Sulaiman

Best wishes ©