Genetic testing and gene therapy

Genetic Screening

Population screening:

- Newborn
- Heterozygote

Prenatal diagnosis:

- Invasive
- Non-invasive

Family screening

Principles?

Screening validation?

Sensitivity/specificity? PPV/NPV?

Which tools do we use?

Limitations

Test errors

Mutations not disease

Test sensitivity

Psychological implications

Discrimination

Lack of treatment

Other diseases

Direct-to-consumer genetic testing?

Unknown to the rest of the world, members of the scientific community have been making their own babies to order for quite some time now.

Prenatal Diagnosis

AFP screening

Amniocentesis

CVS

Cordocentesis

US, MRI

Preimplantation genetic diagnosis

AFP screening:

- Maternal blood
- Amniotic fluid

Fetal DNA circulating in the maternal circulation (screening) NIPS

Amniocentesis:

- Mother >35yrs
- Previous child history
- Paternal history
- Family history
- Abnormal screening test

Risks (leakage, infections, fetal loss) rare

CVS:

- Earlier
- Generally safe but higher risk than amnio
- Limb deficiency?
- No amnio AFP measured

@ MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED

Cordocentesis:

- aka percutaneous umbilical blood sampling
- Quicker 2-3 days vs 10-12
- US detected abnormality
- Blood disease Dx
- Immune disease Dx

US, MRI:

- Limb problems
- Fetal growth
- Cardiac defects
- Diaphragmatic defects
- ... (see box 13-6)

"The genetic engineers gave him that birthmark as part of a sponsorship deal."

Preimplantation genetic diagnosis

PUGH

'It's all your fault, dad – terrible genes'

Gene therapy

Somatic cell therapy

Gene replacement therapy

Gene blocking

Gene therapy for noninherited diseases

Germline therapy

Somatic cell therapy

Cells should be easily accessible and long lived

Proliferating cells are useful to ensure integration of new genetic material

Gene replacement therapy

Viral vectors (transduction)

Non-viral vectors

Retroviral treatment of SCID

- Lymphocytes
- BM stem cells

Integration requires nuclear membrane dissolution during proliferation (advantages/disadvantages?)

Leukemia like disease due to random integration of vector near protooncogene activating it

Liposome for Drug Delivery

- · Constructed artificially in cultured human cells.
- · Constructed by minimum DNA elements for the maintenance of chromosome function
- · Enable gene introduction of desired sequences

Gene therapy

Gene replacement therapy

Viral vectors (transduction)

Non-viral vectors

Gene blocking

Antisense therapy

e.g. blocking KRAS in pancreatic and colon cancer and inducing exon skipping in DMD

Gene blocking

Antisense therapy

Ribozyme therapy

e.g. anti-HER2

Gene blocking

Antisense therapy

Ribozyme therapy

RNAi

e.g. KRAS, BCR-ABL

PUGH

'It's all your fault, dad – terrible genes'

Gene therapy

Somatic cell therapy

Gene replacement therapy

Gene blocking

Gene therapy for noninherited diseases

Germline therapy

Somatic cell therapy

Gene replacement therapy

Gene blocking

Gene therapy for noninherited diseases

Germline therapy