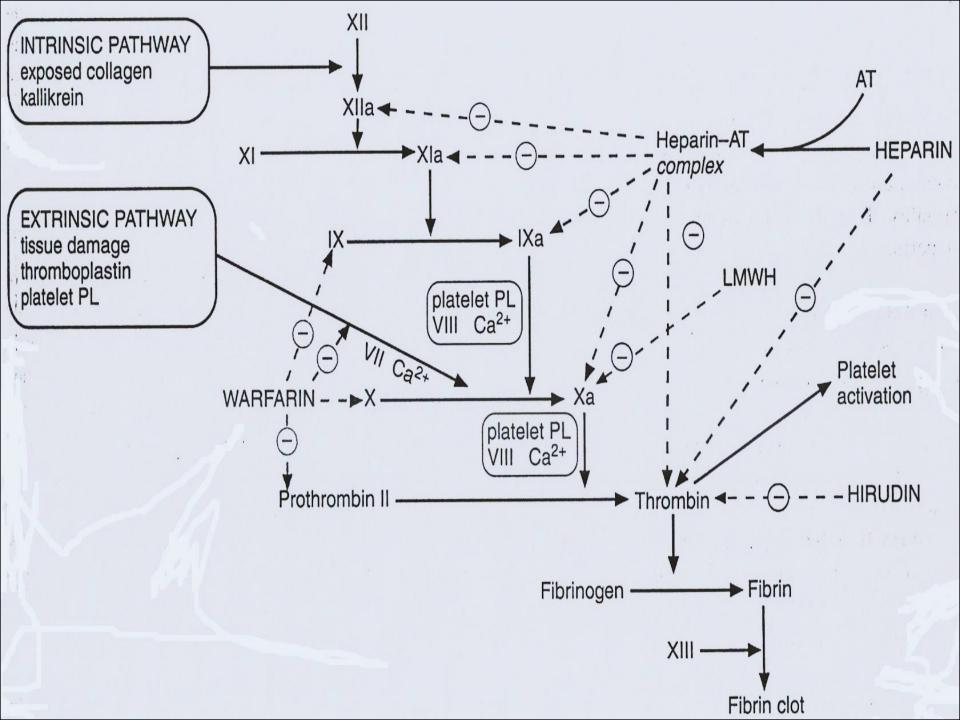
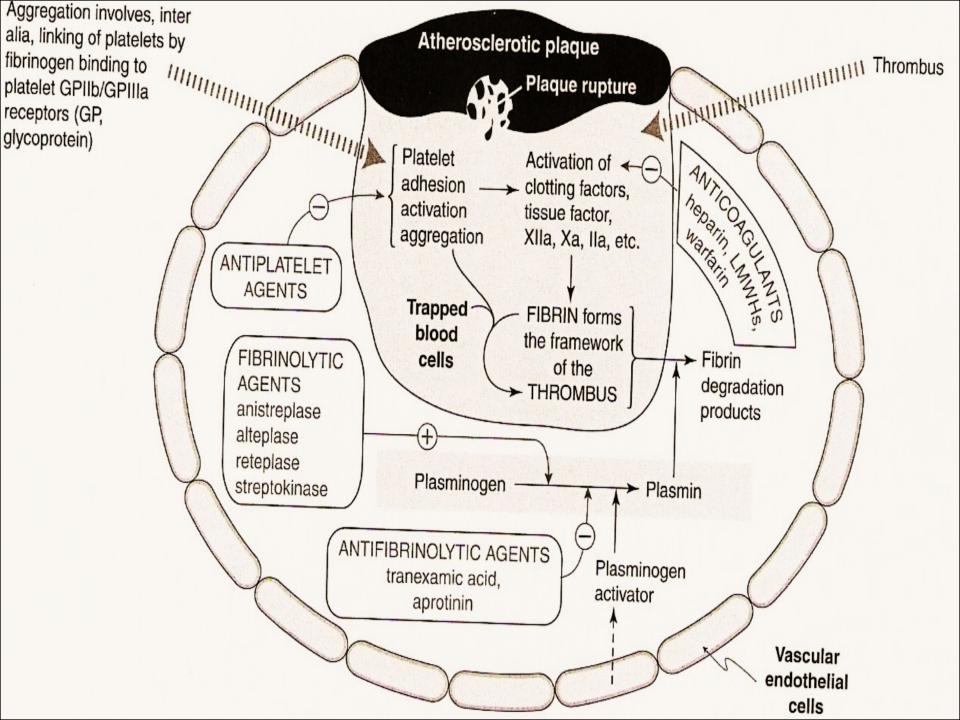
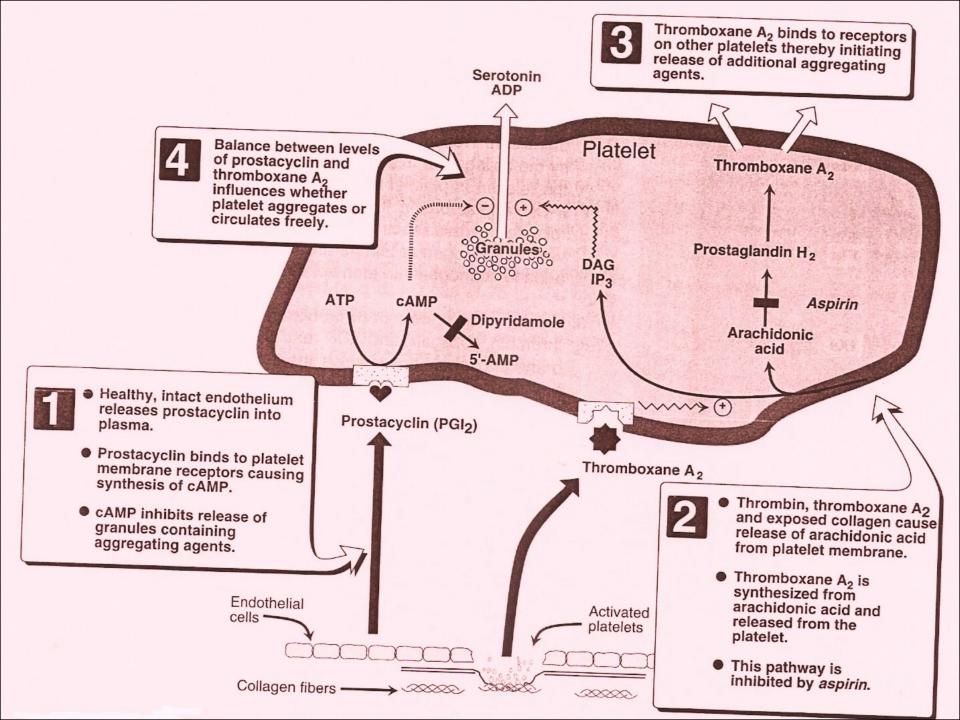
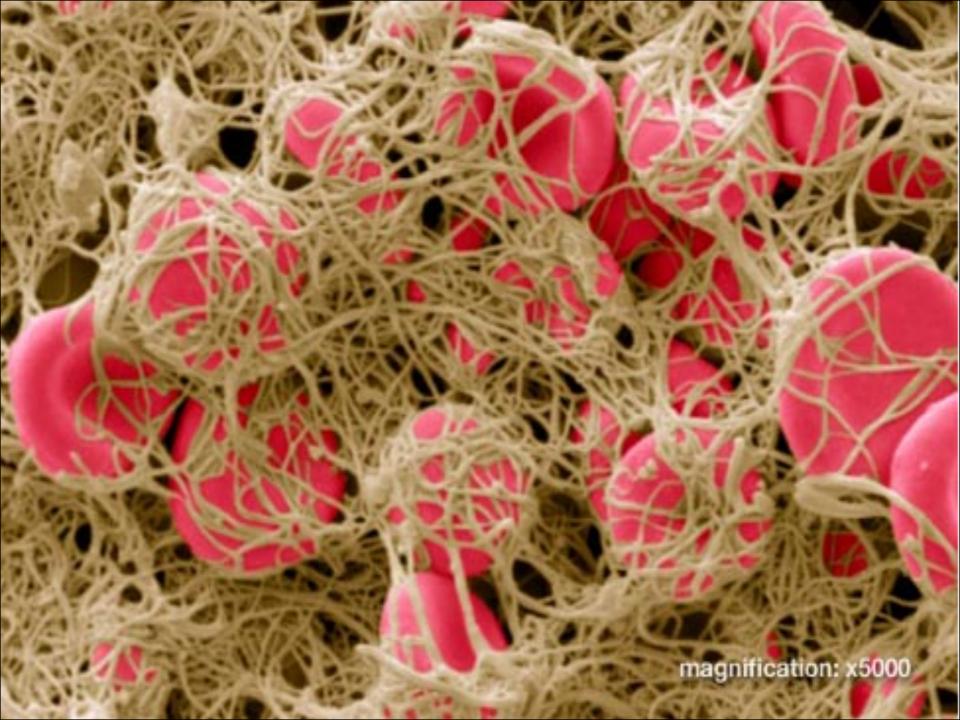

Drugs used in Thromboembolic Disease


Munir Gharaibeh, MD, PhD, MHPE
Department of Pharmacology
Faculty of Medicine
October 2016


Drugs used in Thromboembolic Disease


- Anticoagulants:
 - ●Heparin.
 - Oral anticoagulants.
- Fbrinolytic Drugs:
 - •Streptokinase.
 - ASPAC
 - ●Rt-PA.
 - Urokinase.
 - •Scu-PA.
- Antiplatelet Drugs:
 - Aspirin.
 - Dipyridamole.
 - Sulphinpyrazone.


Component or Factor	Common Synonym	Target for the Action of:
	Fibrinogen	
	Prothrombin	Heparin (IIa); warfarin (synthesis)
	Tissue thromboplastin	
IV	Calcium	
V	Proaccelerin	
VII	Proconvertin	Warfarin (synthesis)
VIII	Antihemophilic factor (AHF)	
IX	Christmas factor, plasma thromboplastin component (PTC)	Warfarin (synthesis)
Χ	Stuart-Prower factor	Heparin (Xa); warfarin (synthesis)
XI	Plasma thromboplastin antecedent (PTA)	
XII	Hageman factor	
XIII	Fibrin-stabilizing factor	·
Proteins C and S		Warfarin (synthesis)
Plasminogen		
		Thrombolytic enzymes, aminocaproic acid

I	Fibrinogen	Freshers	foolish		
I	Prothrombin	Party	People		
II	Tissue Thromboplastin	Tonights	. Try		
IV	Calcium ions	come	climbing		
V	habile factor	hets	hong		
VII	Stable factor	Sing	Slopes		
VIII	Antihemophilic factor	And	After		
TX	Christmas factor	cau	Christmas		
X	Stuart Prower factor	Seniors	some		
XI	PTA	Please	People		
XII	Hageman factor.	Have	Have		
XIII	Fibrin stabilizing factor	Fun.	Fallen		
	Fit Pants, Tight Collars, 200se American Shirts Are Cool Says Pretty Heroine Farah Munic Gharaibeh MD, PhD, MHPF				

Table 28-1. Blood Coagulation Factors

Factor*	Synonyms	Synthesis	In vivo half-life
I	Fibrinogen	Liver	4–5 days
II	Prothrombin	Liver; K-dependent	3–5 days
III	Thromboplastin, tissue factor		
IV.	Ca ²⁺	_	_
V	Accelerator globulin, labile factor	Liver	12-36 hr
VII	Serum prothrombin conversion accelerator (SPCA), proconvertin	Liver; K-dependent	4–6 hr
VIII:C	Antihemophilic globulin (AHG), anti- hemophilic factor (AHF)	Liver; endothelium	10–18 hr
IX	Plasma thromboplastin component (PTC), Christmas factor	Liver; K-dependent	15–30 hr
X	Stuart factor, Stuart-Prower factor	Liver; K-dependent	20-80 hr
XI	Plasma thromboplastin antecedent (PTA)	?	60–70 hr
XII	Hageman factor	Liver?	60–70 hr
XIII	Fibrin-stabilizing factor	?	3–4 days
Protein C	Autoprothrombin II-A	Liver; K-dependent	

Roman numerals are international designations. There is no factor VI.

Risk Factors for Thromboembolism

- Abnormalities of Blood Flow:
 - Atrial fibrillation.
 - Left ventricular dysfunction.
 - Bed rest/immobilization/paralysis.
 - Venous obstruction.

Risk Factors for Thromboembolism

Abnormalities of Surface Contact with blood:

- Vascular injury/trauma.
- Heart valve disease and replacement.
- Atherosclerosis.
- •Acute myocardial infarction.
- •Indwelling catheters.
- Previous DVT/PE.
- Fractures.
- Chemical irritation (K+, hypertonic solutions, chemotherapy).
- Tumor invasion.

Risk Factors for Thromboembolism

- Abnormalities of Clotting Components:
 - Protein C, Protein S, Antithrombin deficiency.
 - Prothrombin G20210A mutation.
 - Antiphospholipd antibody syndrome.
 - Estrogen therapy.
 - Pregnancy, malignancy.
 - Homocystenemia, dysfibrinogenemia,
 - Polycythemia, thrombocytosis.
 - Myeloproliferative disorders.

Risk of Thromboembolism in Hospital Patients

Risk	Procedure		
Low	Minor surgery, no other risk factor Major surgery, age < 40 years, no other risk factors		
	Minor trauma or illness		
Moderate	Major surgery; age ≥ 40 years or other risk factor		
	Heart failure, recent myocardial infarction, malignancy, inflammatory bowel disease.		
	Major trauma or burns		
	Minor surgery, trauma or illness in patient with previous deep vein thrombosis or pulmonary embolism.		
High	Fracture or major orthopaedic surgery of pelvis, hips or lower limb		
	Major pelvic or abdominal surgery for cancer		
	Major surgery, trauma or illness in patient with previous deep vein thrombosis or pulmonary embolism.		
	Lower limb paralysis.		
	Major lower limb amputation.		

Non Thrombogenic Mechanisms in Blood Vessels

- Transmural negative electrical charges.
- Plasminogen activation.
- Protein C activation.
- Production of heparin-like proteoglyans.
- Release of PGI₂.

Inhibitare of Clatting Machaniems

IIIIIDILOIS OI	Clotting ivi	echanisms
Inhibitor		<i>Target</i>

Antithrombin

Inhibits factor IIa, IXa

and Xa.

Protein C Inactivates factor Va

and VIIIa

Protein S Cofactor for activation

Tissue factor pathway

inhibitor (TFPI)

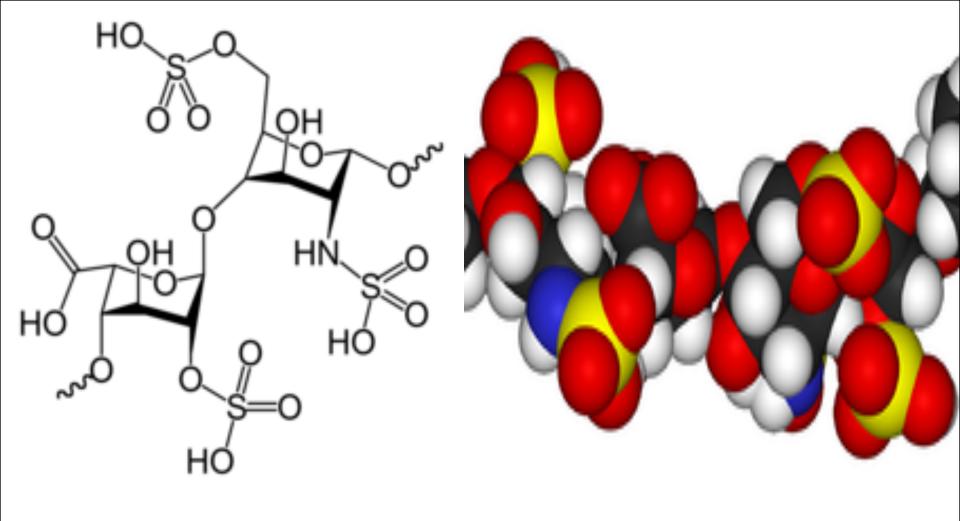
Plasmin October 16

factor VIIa. Lyses fibrin into fibrin Munir Gharaibeh, Megradation products.

Inhibits activity of

of factor C

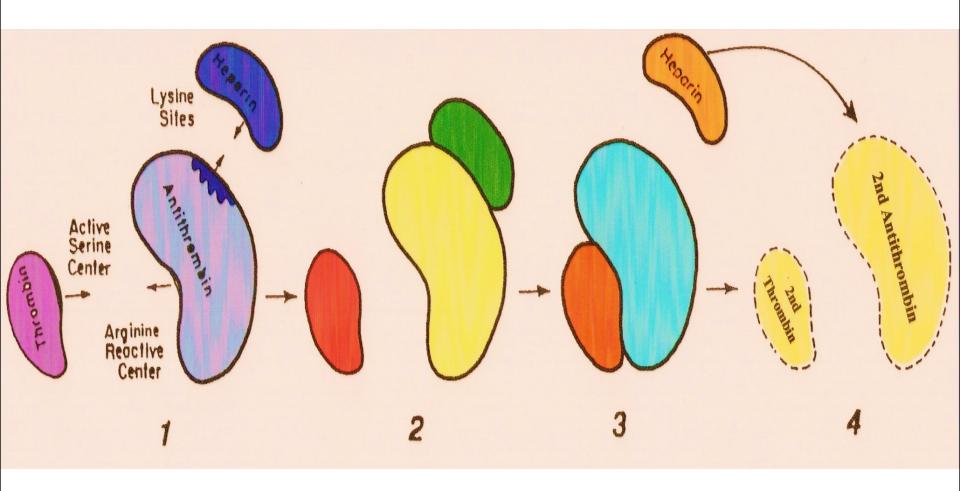
Indirect Thrombin Inhibitors


HEPARIN:

- Unfractionated heparin (UFH).
- **●Low Molecular Weight Heparins (LMWHs):**
 - Enoxaparin.
 - Dalteparin.
 - Tinzaparin(Innohep).
 - Danaparoid.

FONDAPARINUX

HEPARIN₍₁₉₂₂₎


- Heterogenous mixture of sulfated mucopolysacharides.
- Composed of sulfated glucosamine and D-glucoronic acid connected by sulfaminic bridges.
- It is a normal physiological anticoagulant.
- Normally found in mast cells(in an inactive form, but has an obscure function.
- Released with anaphylaxis.
- Obtained from cow lung and pig intestinal mucosa.

- Molecular weight varies:
 - **●**Commercial Unfractionated(UFH):5,000-30,000.
 - High Molecular Weight Heparin (HMWH):2/3rds of UFH
 - Low Molecular Weight Heparin (LMWH)
- $\bullet T_{1/2} = 1 \text{ hr.}$
- Distribution limited to the intravascular compartment.
- Does not cross the placenta and not excreted in breast milk.
- •Eliminated by rapid metabolism by heparinase enzyme in the liver, renal excretion, and uptake by the RES .

- •Acts directly in peripheral blood.
- Does not affect the biosynthesis or plasma levels of any coagulation factor.
- Taken up by the endothelium where it increases the electronegative potential of the vessel wall.
- Binds to a variety of plasma proteins, mainly antithrombin.
- Causes the release of Tissue Factor Pathway Inhibitor (TFPI), which works on Xa, platelets and endothelium.
- UFH inhibits platelets aggregation.
- Activates Lipoprotein Lipase which reduces platelets adhesiveness.

- Antithrombin(ATIII) inhibits clotting factor proteases, especially thrombin (IIa), IXa and Xa.
- Heparin binds tightly to antithrombin and causes a conformational change to expose its active site for more rapid interaction with the proteases.
- Heparin accelerates this complexing by 1000 folds.
- Heparin functions as a cofactor, it is not consumed.

•HMWHs have high affinity for antithrombin which will inhibit coagulation by inhibiting all three factors, especially thrombin and factor Xa.

LMWHs

- ●15 Polysaccharide units.
- •LMWHs causes factor Xa inhibition, but have less effect on thrombin or endothelial cell-heparin receptors and plasma protein binding sites.

•LMWHs have:

- Equal efficacy.
- More predictable effects.
- More bioavailability from s.c site of injection.
- Less frequent dosing requirements.
- Doses specified in milligrams rather than in units.
- Treatment is not generally monitored (except in renal failure, pregnancy and obesity).

• MONITORING:

- Activated Partial Thromboplastin Time (aPTT)
- •Also, Protamine Titration and Anti-Xa units.

 Monitoring the response is needed only in patients receiving UFH, but not needed with LMWH.

TOXICITY:

- •Bleeding.
- •Allergic reactions: fever, anaphylaxis.
- •Alopecia, or loss of hair.
- Osteoporosis and ostealgia.
- Mineralocorticoid deficiency.
- Thrombocytopenia:
 - Occurs in 1-4% of patients taking UFH for 7 days.
 - More with UFH from bovine sources.
 - Lower with LMWH.

Contraindications:

- ●Thrombocytopenia (<75,000).
- Hypersensitivity.
- •Active bleeding.
- Severe hypertension.
- •Hemophilia, purpura.
- •Infective endocarditis, active TB.
- Ulcerative lesions of GIT.
- Threatened abortion.
- Visceral carcinoma.
- Advanced liver or renal disease.

- •Administration of UFH:
- •Initial bolus injection:80-100units/kg.
- Continuous infusion through a pump:
 - ●15-22 unit/kg/hr.
 - This usually maintains aPTT at 2-2.5 times of the control.
 - Not by intramuscular injection.
 - •Low dose prophylaxis:
 - Subcutaneously 5000 units every 8-12 hrs.

Antidote:

Protamine sulfate: is a highly basic low mol.wt compound.

•Administration of LMWHs:

- Almost completely absorbed after s.c. injection.
- Usually given once or twice daily by subcutaneous injection.
- Monitoring is by Xa inhibition assay which is not routinely carried.

Antidote:

- Protamine binds poorly and ineffective.
- No antidote is available nor needed.

Fondaparinux

- Synthetic pentasaccharide fragment of heparin.
- Binds antithrombin with high specific activity, resulting in more selective inactivation of factor Xa.
- Has a long half-life of 15 hours.

Direct Thrombin Inhibitors

- Hirudine (from leeches, Hirudo medicinalis)
- Lepirudin, recombinant form.
- Bivalirudin.
 - •Are bivalent compounds, i.e. they bind at both the catalytic site and the substrate recognition site of thrombin.
 - Eliminated by the kidneys.
 - Can cause allergy and anaphylaxis.

Direct Thrombin Inhibitors

- Argatroban.
- Ximelagatran.
- Melagatran.
 - •Are small molecules that bind only at the active site of thrombin.
 - Eliminated by the liver.

Factor Xa Inhibitors

- •Rivaroxaban"Xarelto"
- Apicaban
- Edoxaban
 - These inhibit factor Xa, in the final common pathway of clotting.
 - Given orally at fixed doses and do not require monitoring.
 - Used to prevent stroke in atrial fibrillation.