

($)$ Sheet
 OSlide
 OHandout

PHYSIOLOGY

Number
Lab 2.
Subject
ECG reading.
Done By

Sara Zayadneh.

\qquad
Doctor

Date: 00/00/2016
Price:

The first thing before reading ECG you should check for the following: -ID, date, time.
-Rhythm (regular\irregular).
-Rate.
-Axis (deviation).
-Waves, intervals, segments.

Normal sinus rhythm:
1-Regular R-R intervals (card method) \rightarrow the distance between each successive $2 R s$ is equal.
2-Every QRS complex is preceded by a P wave.
3-Normal P-R intervals \rightarrow the most important one, start for the beginning of P to the beginning of QRS, normally equals (3-5) small squares, if the $P-R$ interval was abnormal that will affect the R-R intervals.

Note

The easiest lead to determine the rhythm and rate is bipolar limb lead \#2.

Heart rate:

HR= beats \backslash min.
Normal HR 60-100 beat\min.
Remember: each large square $=5$ small squares.
HOW to calculate ?
-If the heart rate was regular, take the distance between any two Rs \rightarrow the distance is taken either by \# of large squares or \# of small squares.
-If the distance including only large squares without any small square, then count the large squares, and use the following equation:

HR=300/ no. Of large squares within R-R interval

If the distance including both large and small squares, then count the small squares, and use the following the equation:

$H R=1500 /$ no. Of small squares within $R-R$ interval

Examples:

1)) If the R - R interval was 3 large squares, then $\rightarrow 300 \backslash 3=100$ beat \backslash min.
2)) If the $R-R$ interval was 3 large squares and 2 small squares, then count the small squares \rightarrow
$\rightarrow\left(3^{*} 5+2\right)=17$ small sq.
$\rightarrow 1500 \backslash 17=88.2$ beat $\backslash \mathrm{min}$.
3)) If the $R-R$ interval was 4 large squares and a small square, then count the small squares \rightarrow
$\rightarrow\left(4^{*} 5+1\right)=21$ small sq.
$\rightarrow 1500 \backslash 21=71.4$.

$$
=======================
$$

* Axis:
is the directional resultant of ventricular depolarization, either normal, left or right deviated, strongly affected by myocardium hypertrophy.
WE LOOK AT LIMB LEADS ONLY.
\rightarrow the easiest is to take limb leads $1+2$.
\rightarrow rule of thumb, you note the deflection of QRS (+ deflection \rightarrow thumb up, - deflection \rightarrow thumb down).
- Normally:

The QRS deflection of both lead $1+2$ are + , so, two thumb up.
** imagine that the head of arrows represent the direction of the thumb, then:

- Right axis deviation: QRS deflection of lead 1 is - , while + for lead 2 .

Riting each other \rightarrow

Right

- Left axis deviation: QRS deflection of lead 1 is + , while - for lead 2 .

Normal P wave:

P wave represents the atrial depolarization, the length and width collectively should not exceed 3 small squares, normal shape \rightarrow dome , smooth.

Normal P-R interval:

لا ألقّ ولا أكثر
**less than 3 small $s q \rightarrow$ no AV delay, $A V$ is not functional, so the current will pass through fast accessory pathway.
${ }^{* *}$ more than 5 small sq \rightarrow more AV delay, AV block.

Normal QRS complex:

width < 3 small sq.
\rightarrow if the shape or width was abnormal \rightarrow ventricular abnormality.
\rightarrow we don't care about the length of QRS complex; since it depends on the calibration.

Normal QT:

ventricular depolarization and repolarization.
form the beginning of Q to the end of T.
\rightarrow corrected QT interval = QT /sq root (R-R)
$<=0.44 \mathrm{~s}$.
OR
< 50% of R-R interval.

- Normal ST segment:
isoelectric (in comparison to the next T-P segment).
\rightarrow If it is elevated \rightarrow acute MI or pericarditis.
\rightarrow If it is depressed \rightarrow ischemia (old ischemia).

T wave:

ventricular repolarization, its length should not exceed 10 small sq.
Normally inverted in aVR, V1, v2 +/- v3, III.
-How to calculate Heart Rate in irregular rhythm?
Count the Rs in 30 large squares then multiply by 10.

Abnormal Rhythm

To determine if it is an atrial abnormal rhythm or a ventricular abnormal rhythm:
\rightarrow if there is normal QRS complexes \rightarrow atrial.
\rightarrow if there is abnormal QRS complexes \rightarrow ventricular.

Atrial rhythm:

1)) Atrial fibrillation:

- irregular irregular rhythm (baseline).
2)) Atrial flutter:
- sawtooth pattern baseline زي سنان المنشار
- irregular regular baseline.

Atrial Flutter - sawtooth pattern

II

To calculate the heart rate:
Count the Rs in 30 large squares then multiply by 10.
$8 * 10=80$ beat $\backslash \mathrm{min}$.

Ventricular rhythm:

No QRS complexes.
1)) Ventricular tachycardia \rightarrow regular shape.
2)) Ventricular fibrillation \rightarrow زي خاربيش الولاد الصغار

- no baseline \no up \no down.
- the patient is almost dying.
- we cannot calculate theHR.

$H R=15 * 10=150$ beat $\backslash \mathrm{min}$.

We cannot calculate the HR.

$$
\begin{aligned}
& \text { =========================== } \\
& \text { =========================== }
\end{aligned}
$$

P-wave / Abnormal Morphology

** normal P wave is less than 3 small sq, if more than that:
\rightarrow normal shape \rightarrow RA hypertrophy $\rightarrow \mathrm{P}$ pulmonale.
$\rightarrow \mathrm{M}$ - like shape \rightarrow LA hypertrophy $\rightarrow \mathrm{P}$ mitral.

1- P Pulmonale (Peaked P wave in RA hypertrophy).

2- P Mitrale (Bifid P wave in LA hypertrophy).

Normal P-R interval:
لا أقلَ ولا أكثر
**less than 3 small $s q \rightarrow$ no AV delay, AV is not functional, so the current will pass through fast accessory pathway (WPW).

* more than 5 small sq \rightarrow more AV delay, AV block.

T wave:

ventricular repolarization, its length should not exceed 10 small sq.
Normally inverted in aVR, V1, v2 +/- v3, III.
T wave conditions:
1-Normal T wave

2- Inverted

3-Hyper acute
(MI)

4- Peaked
(hyperkalemia)
5- Flat
(hypokalemia)

10

Flat T-wave
***hypokalemia.
***if T wave exceeds 10 small sq:
\rightarrow peaked \rightarrow narrow base.
\rightarrow hyper- acute \rightarrow wide base.

Atrioventricular rhythm:

- (Conduction Blocks).
-Heart Block (3rd degrees).
-Bundle Branch Block
\rightarrow looking for QRS complex $\rightarrow \mathrm{M}$ - shaped.
***if M - shaped QRS complexes were on the right side chest leads (V1\V2\V3) >>> right bundle branch block.
*** if M - shaped QRS complexes were on the left side chest leads (V4\V5\V6)>>> left bundle branch block.

