

Receptor Tyrosine Kinases Cascade

- Second Messengers
- Span the membrane, several subclasses (class II, Insulin R), hormone receptor & tyrosine kinase portion

Second Messengers Receptor Tyrosine Kinases

- When activated (dimer) → tyrosines on target proteins:
 - Alterations in membrane transport of ions & amino acids & the transcription of certain genes
 - Phospholipase C is one of the targets
 - Insulin-sensitive protein kinase: activates protein phosphatase 1

Signal Transduction through Tyrosine Kinase

Growth hormones:

Hormone Binding

- ✓ Epidermal Growth Factor
- ✓ Platelet-derived growth Factor

Dimerization of the receptor

- ✓ GH
- ✓ Insulin

Auto phosphorylation of the receptor

Phosphorylation of the target proteins

Growth Hormone & GH receptor

- GH:
 - Monomeric Protein
 - 217 Amino Acids
 - Compact Four-helix Bundle
- GH receptor (cooperative binding)
 - 638 A.Acid
 - Extracellular Domain (≈250 A.A) &
 Intracellular Domain (≈350 A.A)
 - Single Membrane-Spanning Helix
 - Monomeric (free) vs. Dimeric (bound)

Growth Hormone dimerization

Binding of one molecule of growth hormone

Dimerization of the receptor

Janus K

Binds peptides
that contain
with
membrane

SH2

protein kinase-like
protein kinase

that contain
Phosphotyrosine

Receptor dimerization brings two JAKs together Each Phosphorylates key residues on the other

Activated JAK can Phosphorylate other substrates

- STAT
 - Signal Transducers & Activators of Transcription
- Regulator of transcription
- STAT Phosphorylation
 - **→** Dimerization
 - **→** Binding to specific DNA sites
 - If JAK remains active it will produce Cancer

STAT is phosphorylated on a tyrosine residue near the carboxyl terminus

Phosphorylated tyr binds to SH2 domain of another STAT 5 molecule

Tyrosine Kinase & other Hormones EGF

- Epidermal Growth Factor Receptor
 - Monomeric (inactive)
 - EGF binding → Dimerization → Cross Phosphorylation
 → Activation

autophosphorylation

Dimerization is necessary but not sufficient for activation (kinase activity)

Tyrosine Kinase & other Hormones Insulin

- Insulin Receptor
- Tetramer (2^{α} ; 2^{β}), dimer ($2^{\alpha\beta}$ pairs)
- Disulfide bridges
- Insulin Binding → Activation of the Kinase

Ras is a member of small G proteins family

- Monomeric
- 2 forms: GDP ←→ GTP
- Exchange
- Smaller (1 subunit)
- GTPase activity
- Many similarities in structure and mechanism with G_α

 Major role in growth, differentiation, cellular transport, motility etc...

Impaired GTPase activity can lead to cancer in human

Mammalian cells contain 3 types of Ras proteins

Mutation →

Loss of ability to hydrolyze GTP

Ras is locked in "ON" position→

continuous stimulation of growth