Fatty Acid Synthesis

- Requires
 - -Carbon Source: Acetyl CoA
 - -Reducing Power: NADPH
 - -Energy Input: ATP

Why Energy?

FA Degradation and Synthesis

Carboxylation of Acetyl CoA Produces Malonyl CoA O O O

CH_3 -C-COA CO_2 CO_2

Acetyl CoA Carboxylase

Biotin-Containing Enzyme

Fatty Acid Synthase Catalyzes the remaining steps

- Multifunctional Enzyme Complex
- Dimer of two Identical Chains
- Each has Seven Catalytic Activities
 - One activity is Condensing Enzyme with –SH
- One Domain is Linked to Phosphopantetheine
 - With Reactive -SH

Fatty Acid Synthase Catalyzes the remaining steps

- Multifunctional Enzyme Complex
- Dimer of two Identical Chains
- Each has Seven Catalytic Activities
 - One activity is Condensing Enzyme with –SH
- One Domain is Linked to Phosphopantetheine
 - With Reactive -SH
 - Carries Intermediates during Catalysis
 - (Acyl, Acetyl and Malonyl Groups)
 - Known as Acyl Carrier Protein (ACP)

Synthesis of Palmitate (net reaction)

How many cycles of synthesis (Condensation)?

* 7

How many Malonyl CoA?

* 7

How many Acetyl CoA?

* 1

How Many NADPH?

* 14

Production of Cytosolic Acetyl CoA for FA Synthesis

Inner mitochondrial membrane is immpermiable to Acetyl CoA

Regulation of FA Oxidation & Synthesis OXIDATION SYNTHESIS Regulation of AcCoA Carboxylase -Allosteric Mechanism - Phosphorylation

Availability of NAD+

Entry into Mitochondria

• Amounts of Enzymes

Regulation of FA Oxidation & Synthesis

OXIDATION

SYNTHESIS

- **Supply of Fatty**
 - -Hormonal Control
- Entry into Miochondria
- Availability of NAD+

- **Regulation of AcCoA** Carboxylase
 - -Allosteric Mechanism
 - Phosphorylation
- Amounts of Enzymes

Elongation of Fatty Acids

- -in Endoplasmic Reticulum
- Similar Sequence of Reactions
- Different Enzymes

n = 16 or more carbons

Introduction of Double Bonds

- Synthesis of Monounsaturated FA
 - Oleic Acid 18:Δ⁹
 - Palmitoleic 16:Δ9
- In endoplasmic reticulum
- No double bond can be introduced beyond carbon 9 in human

Introduction of Double Bonds (Cont.) Stearoyl CoA NADPH + O₂ NADP++2H₂O Oleoyl CoA P A⁹ Desaturase; Cytochrome b₅

Introduction of Double Bonds (Cont.)

Formation and Modification of Polyunsaturated FA

- -Elongation
- Desaturation

Additional double bonds can be introduced by:

Δ⁴ Desaturase

Δ⁵ Desaturase

Δ⁶ Desaturase

Biosynthesis of Triacylglycerol

Requires

- Acyl~CoA (Active form of FA)
- Glycerol Phosphate Why Active form?

TAG +
$$H_2O$$
 \longrightarrow DAG + FA ΔG -ve DAG + FA \longrightarrow TAG + H_2O ΔG +ve

DAG + Acyl
$$\sim$$
CoA \longrightarrow TAG Δ G $-$ ve

