

Detection, and generation of cellular response

In the second se

Signal Transduction

- Transduction: conversion of one form of a signal to another so as cells can produce many kinds of responses in different ways
- Amplification is a MUST
- Signal (polar, large) should bind receptors:
 - Intrinsic
 - Transmembrane
 - Intra- & extracellular domains
 - Is that enough? The need for 2nd messenger
 - Few in number
 - Restricted movement

Second messengers

- Ability to diffuse to other cellular compartments
- Amplification of the signal
 - Enzyme activation
 - Membrane channels
- Some second messengers are common in multiple signaling pathways (≈ 30 hormones uses cAMP!!!)
- Types of 2nd messengers:
 - Small molecules: cAMP, cGMP, Ca⁺²
 - Phosphorylation through kinases

Signal Termination

- Is it important?
 - Keeps cells responsive to new signals
 - Failure of termination may cause problem e.g GH & cancer
 - How it is achieved?
 - Reversible (non-covalent) \rightarrow concentration drop
 - Degradation of the second messenger
 - Dephosphorylation by hydrolysis

Biological Functions Mediated by 7TM

- Smell, Taste, Vision
- Neurotransmission
- Hormone Secretion

All these receptors share the same basic structure; however, they differ in their specificity and effects

- Cell Growth, Development
- Viral Infection

• Exocytosis

Chemotaxis

G-proteins & cAMP

Hormone → Specific receptor (β1- or β2-adrenergic receptor) → G
protein → Adenylate cyclase → cAMP → protein kinase A →
phosphorylation

G Protein cycles between two forms

G protein: stimulatory or inhibitory?

- Cyclic AMP & G Proteins:
 - − Hormone → receptor (α 2-receptor) → G protein → inhibits adenylate cyclase

G Proteins

- G proteins:
 - More than 100 known G protein–coupled receptors and more than 20 known G proteins
 - Can be activated by combinations of hormones
 - Epinephrine & glucagon act via a stimulatory G protein in liver cells
 - Other than cAMP:
 - Stimulating phospholipase C
 - Opening or closing membrane ion channels

G_{α} subunit transduce many activities

G _s	↑ Adenylate Cyclase
G _{olf}	个 Adenylate Cyclase
Transducin	个 cGMP Phosphodiesterase
G _i	↓ Adenylate Cyclase
G _o	Ca ²⁺ Channels
Gq	个 Phospholipase C

G Proteins (cont.)

- α and γ Subunits have covalently attached fatty acid
- α and $\beta\gamma$ can interact with other proteins
- All 7TM receptors appear to be coupled to G proteins GPCRs

 Amplification: receptor → 100's of G protein → 100's of adenylate cyclase → 100's X 1000's molecules/sec of cAMP

cAMP can affect a wide range of cellular processes

- Dispersion of melanin pigment granules
- \downarrow aggregation of blood plateletes
- Opening of chloride channels
- - Blocks adenosine receptors & inhibits phosphodiesterase

Then what?

Switching off the signal

Dissociation of the hormone

Concentration –

GTPase activity of $G\alpha$ subunit

Hydrolysis of cAMP (phosphodiesterase)

Phosphorylation of the hormone bound-receptor followed by binding to β-Arrestin

ADP

Phosphylation

B-Arrestin

Cholera

 Cholera toxin → unregulated activity of adenylate cyclase in epithelial cells → Excessive cAMP in epithelial cells stimulates active transport of Na⁺ → large flow of Na⁺ and water from the mucosa → diarrhea

(c) 2004, Jenifer Coburn, Ph.D.