Viral genetics

Lecturer
Dr Ashraf Khasawneh
Department of Biomedical Sciences

VIRAL GENETICS

- VIRUSES GROW RAPIDLY
- A SINGLE PARTICLE PRODUCES A LOT OF PROGENY
- DNA VIRUSES SEEM TO HAVE ACCESS TO PROOF READING, RNA VIRUSES DO NOT SEEM TO

NATURE OF GENOMES

- RNA or DNA
- SEGMENTED OR NON-SEGMENTED

GENETIC CHANGE

• MUTATION

RECOMBINATION

ORIGIN OF MUTATIONS

SPONTANEOUS

- tautomeric form of bases
 - A base is changed by the repositioning of a hydrogen atom, altering the hydrogen bonding pattern of that base resulting in incorrect base pairing during replication
- polymerase errors

Tautomeric forms of bases

most of time

rarely

ORIGIN OF MUTATIONS

SPONTANEOUS

- tautomeric form of bases
- polymerase errors
- mutation rates usually higher in RNA viruses (lack of proof reading)

PHYSICALLY INDUCED

- UV light, especially problem if no access to repair
- X-rays

CHEMICALLY INDUCED

- Hydroxylamine NH₂OH
- Alkylating agents

Types of mutations

- POINT: Caused by chemicals or malfunction of DNA replication, exchange a single nucleotide for another
 - Three types
 - Silent
 - Missense
 - Nonsense
- INSERTION
 - •Frame shift
- DELETION
 - Alter the reading frame

PHENOTYPE

PHENOTYPE

the observed properties of an organism

PHENOTYPIC CHANGES

- CONDITIONAL LETHAL multiply under some conditions but not others wild-type (wt) grows under both sets of conditions
- PLAQUE SIZE
 - may show altered pathogenicity
- DRUG RESISTANCE
 - important in the development of antiviral agents
- ENZYME-DEFICIENT MUTANTS
 - some genes can be 'optional' in certain circumstances
- ATTENUATED MUTANTS
 - milder (or no) symptoms
 - vaccine development

GENETIC CHANGE

MUTATION

• RECOMBINATION

RECOMBINATION

Exchange of information between two genomes

RECOMBINATION

'classic' recombination common in DNA viruses

COPY CHOICE RECOMBINATION

COPY CHOICE RECOMBINATION

REASSORTMENT

REASSORTMENT

- form of recombination (non classical)
- very efficient
- segmented viruses only
 - can occur naturally
- used in some newer vaccines
 - eg for influenza and rotaviruses

INFLUENZA VIRUS

- cold adapted
- temperature-sensitive
- attenuated
- live vaccine
- intranasal delivery
- approved 2003

rotavirus vaccine (Rotateq)

- human-bovine reassortants
- live
- oral

rotavirus vaccine (Rotarix)

- attenuated human rotavirus
- live
- oral

NON-SEGMENTED NEGATIVE STRAND RNA VIRUSES

- no classical recombination
- no copy choice
- no reassortment

least ability to exchange genetic material

Defective viruses:

are genetically deficient and incapable of producing infectious progeny virions.

Helper virus:

can supplement the genetic deficiency and make defective viruses replicate progeny virions when they simultaneously infect host cell with defective viruses.

Defective Viruses

- Defective Viruses lack gene(s) necessary for a complete infectious cycle
- helper viruses provide missing functions

Defective interfering particles (DIP)

DIP:

• Defective viruses which can occupy the cell machinery necessary for normal virus replication to <u>prevent</u> virus production, are called "defective interfering particles" (DIP).

COMPLEMENTATION

Interaction at the functional level, NOT the nucleic acid level

Progeny virus assembled using wt N and wt M proteins Genomes in progeny are either ts M or ts N

possibly altered host range

possibly resistant to antibody neutralization